
Naval Command, AD-A267 144
Control and Ocean San Diego, CA "P
Surveillance Center RDT&E Division 92152-5001

Technical Report 1572
March 1993

Decomposition of Large
Sparse Symmetric
Systems for
Parallel Computation
Part 1: Theoretical Foundations

A. K. Kevorkian

sDTIC
SJ 22 1993

Approved for pubic release; distribution Is uriilt..

Vf 93-1j6536

.\3.W21 041 G

Technical Report 1572
March 1993

Decomposition of Large Sparse
Symmetric Systems for

Parallel Computation
Part 1: Theoretical Foundations

A. K. Kevorkian

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5000

J. D. FONTANA, CAPT. USN R.T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

This report was sponsored by the Office of the Chief of Naval Research
under accession number DN302038, program element 0601152, project
number ZW62.

Released by Under authority of
A. K. Kevorkian J. A. Roese, Head
Code 7304 Signal and Information

Processing Division

ACKNOWLEDGMENT

Dr. Michael Heath read an earlier version of this work. His constructive
comments and valuable suggestions were very helpful in improving the presentation
of the material to this form.

This work was funded by the Naval Command, Control and Ocean
Surveillance Center RDT&E Division Independent Research Program, as well as the
High Performance Computing Fellowship Program. The author gratefully
acknowledges both supports.

LH

EXECUTIVE SUMMARY

OBJECTIVE

Given any linear system of equations Mx = b in which M is a large sparse
symmetric matrix, provide an efficient algorithm for generating smaller
computational tasks that can be processed independently of each other by the
different processors of a parallel architecture computer. Such an automatic
decomposition is essential for the effective applications of parallel architecture
computers.

RESULTS

We have presented an efficient linear-time algorithm for decomposing a large
sparse symmetric system of equations Mx = b into independently solvable smaller
tasks that can be executed in parallel on different processors of a parallel
architecture computer. The independent tasks generated by the algorithm include
all full principal submatrices of M that preserve sparsity during the symbolic
factorization stage of the solution process. A detailed computer implementation of
the algorithm called roadmap is covered in part 2 (Kevorkian, 1993).

! Aocession for

NTIS GRA&I 19

DTIC TAB El
Un~ino~Ance~d 0

Just iflaa~tio

Availability Codes

Dist special

• i iii

CONTENTS

EXECUTIVE SUM MARY ... i

1. INTRO D UCTIO N .. 1

2. NO TAT IO N .. 3

3. CORE OF A CLIQUE AND INTERIOR CLIQUES 4

3.1 PARALLELISM PROPERTY OF INTERIOR CLIQUES 6

3.2 SPARSITY-PRESERVING PROPERTY OF AN INTERIOR
C LIQ U E ... 9

4. A METHOD FOR ISOLATING ALL INTERIOR CLIQUES IN
A G RA PH ... 10

5. COMPUTING THE SET OF VERTICES S .. 12

6. COMPUTING CONNECTED COMPONENTS OF INDUCED
SUBG RAPH G (V-S) ... 13

7. CLASSIFYING CLIQUE CONNECTED COMPONENTS OF G(V-S) 16

7.1 MATRIX INTERPRETATION OF THE CLIQUE
CLASSIFICATIO N .. 20

8. COMPUTING INDEPENDENT CLIQUES IN A NONCLIQUE
CONNECTED COMPONENT ... 22

9. COMPLEXITY OF PARALLELIZATION TOOL ROADMAP 27

10. MATRIX INTERPRETATION OF VERTEX PARTITION 28

11. SOLUTION STRATEGY USING STRUCTURED MATRIX 34

12. RECURSIVE EXPLOITATION OF PARALLELISM IN SPARSE
PRO BLEM S .. 36

13. DISTRIBUTION OF WORKLOAD ACROSS PROCESSORS 38

14. AN ILLUSTRATION OF ROADMAP IMPLEMENTATION 42

15. CONCLUSIONS ... 50

16. REFERENC ES .. 51

Iii

FIGURES

1. The graph Gn with respect to vertex partition n = (int(U), V-U, ext(U)) 7

2. The graph Gn with respect to the vertex partition n in relation (4) 8

3. The roadmap linking the four distinct types of cliques in a graph 18

4. A graphical illlustration of Theorem 5 ... 22

5. The graph Gn with respect to partition ri .. 29

6. Categorization of leaf vertices of graph Gn into cliques and
noncliques ... 30

7. The graph Gn"- with respect to the partition n 31

8. The graph Gn,,, with respect to the partition ri" 31

9. The graph Gn* with respect to the partition *. 33

10. Structurally symmetric matrix M .. 42

11. Overall relationship between the arrays TYPE, QUEUE, and
IQUEUE .. 43

12. The graph Gn with respect to vertex partition n ... 44

13. The graph G = (V, E) of matrix M ... 45

14. Grouping of five leaf vertices of Gn using the array TYPE 45

15. Arrays TYPE, QUEUE, and IQUEUE at the completion of
roadmap .. 46

16. The graph Gn* with respect to vertex partition rH* 47

17. The 7-by-7 block bordered diagonal matrix PMPT 48

18. Block bordered diagonal matrix PMPT with generated fill-in 50

iv

PART 1. THEORETICAL FOUNDATIONS

1. INTRODUCTION

The solution of linear systems of equations

Mx=b, (1)

in which M is a large sparse symmetric matrix, forms the most central piece in many
critically important and computationally demanding applications in government and
industry. In the majority of these applications, there is significant parallelism hidden
in the structure of the sparse matrix M. The larger and sparser the matrix, the
greater the opportunities for parallelism. But as matrices get larger and their spar-
sity structures come to be more irregular, the harder it becomes to exploit paral-
lelism in the problem. The basics for the direct solution of sparse symmetric and
unsymmetric systems on conventional machines are well covered in Duff, Erisman,
and Reid (1986) and George and Liu (1981). For parallel architecture machines,
the work in Heath, Ng, and Peyton (1991) provides a detailed and comprehensive
survey of the significant progress made so far on parallel algorithms for sparse
problems.

In this work, we develop an algorithmic tool for exploiting the sparsity structure
of large symmetric matrices to generate computational tasks that can be processed
in parallel on different processors of a parallel architecture computer. These
computationally independent tasks are often referred to in the scientific literature as
parallel regions of computation.

Given any sparse symmetric matrix M, we model the zero-nonzero structure of
M using an undirected graph G = (V, E). With respect to the graph G, the four key
components of our parallelization tool are then as follows:

1. Compute the set of vertices S = {v E VI 3 (v,w) E E with degGv > degGw };
2. Compute connected components of induced subgraph G(V-S);
3. Classify clique connected components of G(V-S);
4. Compute independent cliques in nonclique connected component of G(V-S).

The construction of the set of vertices S forms the most novel and critical com-
ponent of the parallelization tool. To highlight the key property of the set S, con-
sider any clique in G with vertex set U, and suppose we partition U into two disjunct
parts U' and U' such that U= {u I degGu < degGv for all v e U). We call the set of
vertices U the core of clique G(U), and for the special case where a vertex u in U'
satisfies the equality degGu = IU1-1, we call U' the interior of G(U) and the induced
subgraph G(U') an interior clique. The matrix interpretation of an interior clique
makes this subgraph of G of some interest in sparse matrix computations. To high-
light this, let G(U) be any interior clique in G and let A be a principal submatrix of M
corresponding to G(U). Then, in subsequent developments, we show that the sym-
bolic factorization of submatrix A does not produce fill-in. Interior cliques are thus
ideally suited for sparse matrix computations since reductions in fill-in generally
improve the overall efficiency of a solution process.

1

Going back to step 1 of the parallelization tool, we show that every interior
clique in the graph G is a connected component of the induced subgraph G(V-S),
and so steps 1 and 2 of the parallelization tool isolate every principal submatrix of a
sparse symmetric matrix, which preserves sparsity in the process of symbolic
factorization. Step 3 of the parallelization tool deals with the connected
components of G(V-S) that are cliques but not interior, whereas step 4 focuses on
those connected components of G(V-S) that are not cliques. The objective of step 3
is to classify the noninterior cliques in G using an interior clique as the clique of
choice. The purpose of step 4 is to exploit the underlying structure of a nonclique
connected component.

Through the four algorithmic steps embodied in the parallelization tool, we
obtain a vertex partition

* M- (V ,V 2 , ... , Vr, S*),

where
S ý:: S*,

and such that the following three properties are satisfied:

(a) For any two distinct elements Vi and VJ of the partition, no vertex in Vi is
adjacent to a vertex in VI;

(b) Every element Vi of the partition induces a clique in G;
(c) Interior of every clique in G is an element of the partition.

By properties (a) and (b), the graph with respect to the vertex partition n* is a
star-shaped graph with root vertex S* and r leaf vertices V1 through Vr each induc-
ing a clique in G. The leading r elements of the partition thus correspond to r dense
computational tasks, which can be processed in parallel on different processors of
a parallel architecture machine. In the case where the matrix M in equation (1) is
positive definite, each of the r independent computational tasks requires Cholesky
factorization of a full nonsingular principal submatrix of M as well as the solution of
a full triangular system with multiple right-hand sides. Property (c) of the vertex
partition is a means for keeping the fill-in acceptably small.

For an arbitrary sparse symmetric matrix, the problem of finding an ordering that
minimizes fill-in is NP-complete (Yannakakis, 1981), and so most ordering methods
must rely on heuristics to produce small fill-in. Among the many heuristic methods
proposed and developed over the last 35 years, the minimum degree algorithm
(George & Liu, 1981) stands out as the most popular and widely used method. The
ordering scheme we have described in this work uses the degrees of vertices as
well, but in a very different way. For each vertex v in the set of vertices S Q S*, there
must exist in E an edge (v, w) such that degGv > degGw. The combined use of
edges and degrees in step 1 of the parallelization tool makes our ordering scheme
distinctly different from the minimum degree method.

This report is organized as follows. In section 2, we cover the necessary graph-
theoretic notation. In section 3, we give a concise formulation of the concepts of
"core" and "interior clique" and subsequently derive the sparsity preserving and
parallelism properties of an interior clique. In section 4, we motivate the four-step

2

parallelization tool. In sections 5 through 8, we give detailed analysis and high-
level implementations of steps 1 through 4 of the parallelization tool. In section 9,
we show that the parallelization tool has linear-time complexity. A computer
implementation of this parallelization tool called "roadmap" is covered in Kevorkian
(1993). The computer program roadmap was developed using the widely available
linear algebra package Matlab (MathWorks, 1990). In section 10, we discuss matrix
interpretations of vertex partitions produced by the parallelization tool. In particular,
we show that the problem of constructing a vertex partition n* satisfying property (a)
is equivalent to computing a permutation matrix P such that PMPT is an (r+l)-by-
(r+l) block bordered diagonal matrix. The use of block bordered diagonal forms
has recently become an area of active research in diverse disciplines of science
and engineering (Zhang, Byrd & Schnabel, 1992). A main motivation has been the
exploitation of parallelism in scientific computing. Section 10 gives detailed
background on the methodologies adopted to date for permuting symmetric
matrices into block bordered diagonal form. In section 11, we discuss a strategy for
solving sparse positive definite systems of equations using vertex partitions
produced by the parallelization tool. In section 12, we discuss the exploitation of
parallelism in large Schur complements and our progress in the development of a
recursive parallelization tool. In section 13, we address issues concerning the
proper distribution of workload across processors. In section 14, we illustrate the
application of the computer program roadmap to a sparse symmetric matrix with
irregular sparsity structure.

2. NOTATION

A graph G = (V, E) consists of a finite, nonempty set of vertices V and a set of
edges E. If the edges are ordered pairs (u, v) of vertices, G is said to be directed. If
the edges are unordered pairs of vertices, also denoted by (u, v), G is said to be
undirected. All graphs in this work are assumed to be undirected and connected.
For a subset U of the vertex set V, the induced subgraph G(U) of G is the subgraph
G(U) = (U, E(U)) where

E(U) = {(u,v) e Elu, v E U).

A set of vertices S is called a separator of G if the induced subgraph G(V-S) is
disconnected.

In a graph G = (V, E), a vertex v is said to be adjacent to another vertex w if the
pair (v, w) is an edge in E. The set

adjGv = {w r V- {v}I(v, w) e E}

denotes the set of vertices adjacent to v. The degree of vertex v, denoted by degGv,
is the number of vertices adjacent to v and so we have

degGv = IadjGvl.

3

A graph G = (V, E) is said to be regular if all its vertices have the same degree.
An induced subgraph G(U) of G is called a clique if each vertex in U is adjacent to
every other vertex in U. A clique is maximal if it is not a proper subgraph of another
clique. For any graph G = (V, E), a vertex partition is called a clique partition if each
element of the partition induces a clique. A vertex v in G is called simplicial
(Lekkerkerker & Boland, 1962; Dirac, 1961) if the subgraph of G induced by the
vertex set adjGv is a clique.

For any graph G = (V, E), the complement of G is the graph G* = (V, E*) with

edge set E* defined by

E* ={(v, w)v, w EV and (v, w) e E.

Thus for any two distinct vertices v and w, the pair (v, w) is an edge in E* if and only
if (v, w) is not an edge in E. This means that for any subset U of V, the graph

G'= (U, E(U) U E*(U))
is a clique.

For every n-by-n structurally symmetric matrix M = [miii, there exists an undi-
rected graph G = (V, E) such that vertex vi in V represents row i of M and the edge
(vi, vi) is in E if and only if mij * 0 for all i •j.

Another interesting representation for a graph G = (V, E) is by means of vertex
partitions. For any vertex partition ri = (V1 , V2 , ... , Vk) in G, Gn = (Vf, En) is a graph
such that each element Vi of the partition is a vertex in Vn and the pair (Vi, Vj) is an
edge in En if and only if a vertex in the set Vi is adjacent to a vertex in the set Vi.
George and Liu (1981) call Gr a quotient graph of G with respect to n. Quotient
graphs are well suited for exploiting the underlying structure of block matrices.

3. CORE OF A CLIQUE AND INTERIOR CLIQUES

The central idea in this work concerns the partitioning of the set of vertices in an
arbitrary clique into two disjunct parts using the degrees of the vertices in the
clique.

For a clique G(U) in the graph G = (V, E), the core of G(U) is the set of vertices
cor(U) defined by

cor(U) = (u e UIdegGu = min degGv .
VE U

The set cor(U) partitions the vertices in clique G(U) into two disjunct parts cor(U)
and U - cor(U) (possible empty) satisfying the following two properties:

(a) degGu _ IUP - 1 for any u c cor(U),
(b) degGu > IU1 - 1 for any u e U - cor(U).

4

Statem,.,nt (a) holds since degGu > degG(U)V = lU- - 1 for any v e U. Statement
(b) is obtained by contradiction. Let u be any vertex in U - cor(U) such that
degGu = IUI - 1. Then degGu -degGv for any v E U and so u must be in cor(U),
and thus we have a contradiction.

The single cd',erence between the conditions in statements (a) and (b) is the
equality ca: - degGu = IUl - 1 in statement (a). This equality associates with the set
of vertices cor(U) properties that will prove very useful from the standpoint of
exp!oiting parallelism and preserving sparsity in sparse undirected graphs. To
facilitate our handling of this particular instance, we introduce the following special
case of the core of a clique.

For a clique G(U) in G = (V, E), the interior of G(U) is the set of vertices int(U)
defined by

int(U)= {u UI degGu = IU1l-.

Also, the exterior of the clique G(U) is the vertex set ext(U) defined by

ext(U) = U - int(U).

From the definitions of int(U) and cor(U), it is easy to see that for any clique G(U)
in G the following relation holds

cor(U) = int(U)
if and only if

min degGv = IUI- 1.
v• U

Therefore, the core and interior of a c!0que G(U) are identical if and only if there
exists in U a vertex v such that degGv = JUl - 1. Otherwise, G(U) is a c;ique with an
empty interior. In the case that G(U) is a clique with a nonempty interior, we call the
clique induced by the vertex set int(U) an interior clique.

Before we present the main results in this work, we will first explore the role of
interior cliques in sparse matrix computations and parallel processing and also
establish connections to other works whenever appropriate.

Let G(U) be any clique in G = (V, E). Then for any vertex u in U the following two
conditions are equivalent:

(a) degGu = IUI- 1.
(b) adjGu = U - {u}.

By condition (b), we have {u) u adjGu = U, and so the vertex u together with the
vertices that are adjacent to u form a clique, which means that every vertex in an
interior clique is a simplicial vertex. This connection between an interior clique and
a simplicial vertex provides a number of worthwhile facts, which are summarized in
the next result.

5

Lemma 1. Let G(U) be any clique with a nonempty interior in G = (V, E). Then
the following statements are true:

(a) G(U) is a maximal clique.
(b) No vertex in int(U) is adjacent to a vertex in V - U.
(c) No vertex in U is contained in the interior of any other clique in G.

Proof. Statements (a) and (b): Let u be any vertex in int(U). Then we have
adjGu = U - {u}, which means that u is not adjacent to any vertex in V - U. This
completes the proof of statements (a) and (b). Statement (c): The proof is by
contradiction. Let G(U') be any clique in G with U' * U. If the interior of G(U') is
empty, we have nothing to prove. So Let G(U') be any clique in G with
nonempty interior. Assume for contradiction that the set int(U) r) int(U') is
nonempty, and let v be any vertex in int(U) r) int(U'). Since vertex v is in both
int(U) and int(U'), we have adjGv = U - {v} and adjGv = U' - {v) which means that
U = U' and so we have a contradiction. Thus for any two distinct cliques G(U)
and G(U') with nonempty interiors, the following relation must hold

int(U) n int(U) =0. (2)

Now assume for contradiction that the intersection ext(U) n int(U') is nonempty, and
let v be any vertex in the set ext(U) n int(U') . Since v is a vertex in int(U'), we have
adjGv = U' - {v). Also, since G(U) is a clique and v is a vertex in ext(U), we have
U - {v}) adjGv. Thus U Q U' and so we obtain U c U' since U * U'. But by statement
(a) the set U cannot be a proper subset of U' since G(U) is a maximal clique and
G(U') is a clique. Thus we have a contradiction, and so for any two distinct cliques
G(U) and G(U') with nonempty interiors, the following relation must also hold

ext(U) r int(U') = 0. (3)

The proof of statement (c) is now completed by first combining relations (2) and (3)
and then making use of the equality U = int(U) u ext(U).

3.1. PARALLELISM PROPERTY OF INTERIOR CLIQUES

Lemma 1 provides the key connection between interior cliques and parallel
computations on sparse symmetric matrices. To highlight this, let G = (V, E) be any
graph and let U be any proper subset of V. Assume that G(U) is a clique with a
nonempty interior. By construction, the sets int(U) and ext(U) form a partition of U,
and so the triple defined by

n = (int(U), V-U, ext(U))

is a vertex partition in G.

Let Gri = (Vn-j, En) be the graph with respect to the vertex partition n. By state-
ment (b) of Lemma 1, no vertex in int(U) is adjacent to any vertex in V-U. Thus no
edge in En connects the two vertices int(U) and V-U in Vn and so the graph Gn
takes the star-shaped form shown in figure 1 since G is a connected graph.

6

Figure 1. The graph Gn with respect to vertex partition n = (int(U), V-U, ext(U)).

The graph Gn in figure 1 identifies the set of vertices ext(U) as a separator of the
graph G. This means that the interior clique G(int(U)) must be a connected compo-
nent of the induced subgraph G(V-ext(U)). This interpretation of Gn together with
statement (c) of Lemma 1 provides a unified framework for gaining insight into the
underlying structure of a sparse undirected graph.

So let us pick in the graph G = (V, E) any two distinct cliques G(U) and G(U')
with nonempty interiors and use the four disjunct vertex sets int(U), int(U'), V - U -
U', and ext(U) u ext(U') to form a vertex partition n defined by

n = (int(U), int(U'), V - U - U', ext(U) u ext(U')).

Our next result sheds insight into the structure of the graph Gn with respect to
the vertex partition n and thereby establishes the key "parallelism" property of inte-
rior cliques in general sparse undirected graphs.

Theorem 1. Let G(U) and G(U') be any two distinct cliques in G = (V, E) with
nonempty interiors. Then the interior cliques G(int(U)) and G(int(U')) are connected
components of the induced subgraph G(V - ext(U) - ext(U)).

Proof. Let V = V - ext(U) - ext(U'), and assume for contradiction that G(int(U)) is
not a connected component of G(V'). Then one of the following three conditions
must hold:

(a) int(U) r) int(U') * 0,
(b) for some vertex u in int(U), u is adjacent to a vertex in the set V - U - U',
(c) for some vertex u in int(U), u is adjacent to a vertex in int(U'),

since V = int(U) u int(U') u (V - U - U').

By relation (2), uondition (a) cannot hold. By statement (b) of Lemma 1, condi-
tion (b) cannot hold. Thus condition (c) must hold, and so there exists in E an edge
(u, w) such that w is in int(U'). This means that w is a vertex in ext(U) since by
statement (b) of Lemma 1 any vertex in V - int(U) adjacent to u must be in ext(U).

7

Thus we have ext(U) n int(U')* 0 since w is in both ext(U) and int(U'), and so by
relation (3) we have a contradiction. This completes the proof.

As an immediate consequence of Theorem 1, we obtain the following corollary
pertaining to the parallelism property of interior cliques.

Corollary 1.1. Let G(Ui) through G(Uk) be any k distinct cliques in G = (V, E) with
nonempty interiors, and let S be the subset of V defined by

k

S = U ext(U1).

Then the k interior cliques G(int(U1)) through G(int(Uk)) are connected components

of the induced subgraph G(V-S).

Proof. The proof is obtained by repeated application of Theorem 1.

Thus if we let n be a vertex partition in G = (V, E) defined by

-= (int(U1), int(U2), ... , int(Uk), V - U k Ui, U k ext(Ui)), (4)

then by Corollary 1.1 it follows that the graph Gn with respect to the vertex partition
ni has the star-shaped form shown in figure 2. This form of the original graph G
clearly exhibits the parallelism property of any interior clique in G.

k

U ext(U i)
i=1

k
int(U 1) int(U2) ... lnt(U k V-U Ui

Figure 2. The graph Gn with respect to the vertex partition n in relation (4).

8

3.2 SPARSITY-PRESERVING PROPERTY OF AN INTERIOR CLIQUE

Let Mx = b be any system of linear equations in which M is an n-by-n symmetric
matrix with nonzero diagonal, and suppose we use the ith equation in the system
Mx = b to eliminate the ith component of x from the remaining n -1 equations. This
numerical process of transforming the original system of n equations into a reduced
system of n -1 equations has a concise graph-theoretic interpretation due to Parter
(1961).

Suppose G = (V, E) is the undirected graph of the n-by-n symmetric matrix M
and let v denote the vertex in V representing the ith row of M. Then the set of edges
defined by

defGv={ (u,w) I u, we adjGv, (u,w) e E, u* w}

correspond exactly to the fill-in produced when the ith component of x is eliminated
from the original system (assuming no cancellation of nonzero elements). The set
of edges defGv is called the deficiency of v in G (Rose, Tarjan, & Lueker, 1976). The
graph

Gv = (V - {v}, E(V - {v)) u defGv },

obtained by adding the deficiency defGv to the induced subgraph G(V-{v}), is pre-
cisely the undirected graph of the (n -1)-by-(n -1) coefficient matrix in the reduced
system of n -1 equations. The graph Gv is called the v-elimination graph of G (Rose,
Tarjan, & Lueker, 1976).

Now let P be any n-by-n permutation matrix and suppose we wish to eliminate
for some k < n the first through kth components of the vector Px in that order. Let a,
through Ok denote the vertices in G, representing rows 1 through k of the matrix
PMPT, respectively. If the k-by-k leading block in the matrix PMPT is nonsingular,
then the fill-in created in the process of transforming the original system Mx = b into
the reduced system of n - k equations can be obtained by repeated application of
Parter's method at vertices al, a2, ... , ak, in that order.

To quantify this, let a denote the ordering

and let us set the original graph G to Go and introduce the following k elimination
graphs:

G i= (G i-1)q, i= 1,2,..., k.

The graph G1 is the al - elimination graph of Go, G2 is the a2 - elimination graph of
G1 , and so on up to Gk, which is the Ok - elimination graph of Gk- 1. Then by
repeated application of Parter's method it follows that each edge in the set of edges
defined by

FGa = defGco(x1 u defGl(*2 u ... u defGk.lak,

9

corresponds exactly to an element of the fill-in produced in the process of gen-
erating the reduced system of n - k equations (assuming no cancellation of
nonzero elements). Using this notation, we are in position to state the sparsity-
preserving property of an interior clique.

Theorem 2. Let G(U) be any clique with nonempty interior in G = (V, E), and let a
be any ordering of the vertices in the interior set int(U). Then

FGz = 0.

Proof. The proof is by induction on the size k of the ordering a. Since each ver-
tex in an interior clique is simplicial, all k vertices in a are simplicial vertices in G.
This means that the deficiency of vertex a, in Go is empty since al is a simplicial
vertex in G, and so the theorem holds for k = 1. Suppose the assertion holds for any
ordering c' = (al, a2, ... , a4) with i < k. Then FGa' = 0 and so the elimination graph Gi
is a subgraph of the original graph G. This means that oi+1 is a simplicial vertex in
Gi since a4+1 is a simplicial vertex in G. Thus the deficiency of vertex 04+1 in Gi is
empty and so the assertion holds for the ordering (a,, a2, ... , ai+1). By the induction
hypothesis, the proof is now complete.

We will return to this result in subsequent developments when we deal with
matrix interpretations of the graph-theoretic results derived in this work.

4. A METHOD FOR ISOLATING ALL INTERIOR CLIQUES
IN A GRAPH

The main property of the concept of core of a clique is highlighted in the follow-
ing result.

Theorem 3. Let n = (Vl, V2, ... , Vk) be any clique partition in G = (V, E). Then for
any clique G(U) in G, the following relation holds.

k

int(U) c U cor(Vi).
iaI

Proof. If G(U) is a clique with empty interior, we have nothing to prove. Suppose
G(U) is a clique with nonempty interior, and let Cn denote the union of the k sets of
vertices cor(VI) through cor(Vk). Assume for contradiction that the assertion of the
theorem does not hold. Then we get int(U) rn (V - Cn) * o, and so for some element
Vi in the clique partition n we have int(U) n (Vi - cor(Vi)) • 0. Let u be any vertex in
the intersection int(U) n (Vi - cor(Vi)) and let v be any vertex in cor(Vi). Since v is a
vertex in the clique G(Vi), every vertex in the set Vi - {v) is adjacent to v. This means
that the vertex u in int(U) is adjacent to v since u is in the set Vi. So by statement (b)
of Lemma 1 we get Vi g U since any vertex adjacent to a vertex in int(U) must be in
U. Now one of the following two cases must hold.

10

Case 1. v c int(U). Then we get degGu = degGv since both vertices u and v are
in int(U). But since u is in Vi - cor(Vi) and v is in cor(Vi) we have degGu > degGv and
a contradiction.

Case 2. v e int(U). Then v • U - int(U) since v is a vertex in Vi and Vi g U. Thus
we get degGu < degGv since u is in int(U) and v is in U - int(U). But since vertex u is
in Vi - cor(Vi) and v is in cor(Vi) we have degGu > degGv and a contradiction.

This completes the proof.

Since each vertex and each edge of a graph G = (V, E) forms a clique, consider
a special case where each element Vi of a clique partition n in G corresponds to
either a vertex in V or an edge in E. If each element of n corresponds to a vertex in
V, then the application of Theorem 3 to i- provides no worthwhile information since
cor(Vi) = Vi, which means that Cn = V. On the other hand, if any element Vi of n cor-
responds to an edge (v,w) in E with degGv * degGw, then by Theorem 3 we can
immediately conclude that the vertex u with the strictly larger degree in the set of
vertices Vi = {v,w} can never be part of any interior clique in G since u is not in
cor(Vi). This interpretation of Theorem 3 using edges of a graph directly leads to a
result that identifies a set of vertices S such that all interior cliques in G are con-
nected components of the induced subgraph G(V-S). A concise statement of this
result follows.

Corollary 3.1. Let S be a set of vertices in G = (V, E) defined by

S = {v E VI 3 (v, w)e E with degGv > degGw }.

Then every interior clique in G is a connected component of G(V-S).

Proof. Let G(U) be any clique in G with nonempty interior. Then the intersection
of the sets int(U) Pnd S must be empty if the assertion of the corollary holds.
Assume for contradiction that the intersection of the sets int(U) and S is nonempty,
and let v be any vertex in the intersection. Since v is in S, there exists in E an edge
(v, w) such that degGv > degGw. Let U be the vertex set consisting of the two ver-
tices v and w. Then G(U) is a clique with cor(U) = {w} and U - cor(U) = (v} since
degGw < degGv. Now let n be any clique partition in the graph G = (V, E) such that
U is an element of n. Then by Theorem 3 we have int(U) a Crn and so v is in the set
Crn since v is in int(U). But this is a contradiction since v is not in cor(U). Thus, we
get int(U) r) S = 0, which means that the interior clique G(int(U)) is a subgraph of
G(V-S).

Assume for contradiction that G(int(U)) is not a connected component of G(V-S).
Then by statement (b) of Lemma I the intersection ext(U) n (V-S) must be
nonempty. Let v be any vertex in the intersection of the sets ext(U) and (V-S) and
let u be any vertex in int(U). Then there exists in E an edge (u, v) with degGv >
degGu since u is in int(U) and v is in ext(U). Thus, the vertex v is in the set S which
is a contradiction since it was assumed that v is a vertex in V-S. This completes the
proof.

11

Corollary 3.1 motivates a four-step method for exploiting the underlying
structure of an arbitrary undirected graph G = (V, E). These steps are as follows:

1. Compute the set of vertices S;
2. Compute connected components of induced subgraph G(V-S);
3. Classify clique connected components of G(V-S);
4. Compute independent cliques in nonclique connected components of G(V-S).

In what follows, we give detailed algorithms for the solution of Problems 1
through 4. Initially, all algorithms will be presented in the Algol-like language
adopted by Aho, Hopcroft, and UlIman (1976). The clique connected components
computed in Problem 2 together with the independent cliques computed in
Problem 4 form the parallel regions produced by this parallelization tool. Computer
implementation of the parallelization tool using the linear algebra package Matlab
is given in Kevorkian (1993).

5. COMPUTING THE SET OF VERTICES S

We solve Problem 1 in linear time by visiting the vertices and edges of a graph
G = (V, E) in the following manner. We select and visit a vertex v. Then for each
vertex w adjacent to v we do the following. If w has been visited previously, we pick
another vertex adjacent to v. If w has not been visited previously, we compare the
degrees at vertices v and w. If the degrees are equal, we pick another vertex adja-
cent to v. If the degrees are unequal, then the vertex with the strictly larger degree
is marked as a vertex that belongs to the set S. This process is continued until all
vertices in V have been visited.

The following algorithm computes the vertex set S in running time proportional
to the number of vertices in V plus number of edges in E. The input to the algorithm
is an undirected graph G = (V, E) represented by adjacency lists ADJ(v) for all v in
V. We use a Boolean array SN setting SN(v) = 1 if and only if v is an element of the
set S. We assume all vertices are initially marked "new" and all degrees have been
computed and stored on the single array DEG.

procedure search:
begin

for all v in V do
begin

mark v "old";
for each vertex w on ADJ(v) do

If w is marked "new" then
If DEG(v) * DEG(w) then

If DEG(v) < DEG(w) then
SN(w) 4-1

else
SN(v) ,- 1

end;
comment S = {vISN(v) = 1)

end

12

By construction, the set of vertices S computed in the graph G = (V, E) by proce-
dure search will be empty if and only if G is a regular graph. Note that every vertex
in a regular graph has minimum degree, and so computing independent cliques in
G (last step of the parallelization tool) makes good sense for parallel computation.
If the set of vertices S is nonempty and G(V-S) is a connected graph, then one can
easily show that the set of vertices V-S satisfies the following equality

V - S = { u I degGu = min degGv }.
vEV

This means that every vertex in the set V-S has minimum degree in G, and so com-
puting independent cliques in G(V-S) is a sensible strategy for parallel computa-
tion.

One other connection between the set S and vertices with minimum degree is
highlighted in the next result.

Lemma 2. For any graph G = (V, E), if a vertex v in V has minimum degree in G
then v is a vertex in the set V-S.

Proof. If v is a vertex in V with minimum degree in G, then for any edge (v, w)
incident with v we have degGv < degGw, which means that v can never be in the set
S. This completes the proof.

6. COMPUTING CONNECTED COMPONENTS OF
INDUCED SUBGRAPH G(V-S)

Problem 2 is solved in linear time using the depth-first search method (Tarjan,
1972; Aho et al., 1976). The connected components of the induced subgraph
G(V-S) are placed consecutively on the single array QUEUE. Pointers to the
starting vertices of the connected components are placed on the single array
IQUEUE. Computation of the array IQUEUE is aided using two integers LEAF
and ROOT where LEAF is the pointer to the last vertex placed on array QUEUE
and ROOT is the pointer to the starting vertex of the most recently computed
connected component. The entire algorithm together with the procedure com-
ponent(v), called by dfs, is given below. We assume both arrays QUEUE and
IQUEUE are initially set to empty and the integer LEAF is set to zero.

13

procedure dfs:
for all v in V do

If SN(v) = 0 then
If v is marked "new" then

begin
mark v "old";
add v to end of QUEUE;
LEAF +- LEAF + 1;
ROOT +- LEAF;
add ROOT to end of IQUEUE;
RANKE +- 0;
NGU +- empty;
component(v) ;
RANKU * LEAF - ROOT + 1;
RANKN<-- INGUI;
for all w on NGU do TEST(w) <- 0;
classify

end

procedure component(v):
for each vertex w on ADJ(v) do

If SN(w) = 0 then
begin

RANKE <- RANKE + 1;
If w is marked "new" then

begin
mark w "old";
add w to end of QUEUE;
LEAF +- LEAF + 1;
component(w)

end
end

else
If TEST(w) = 0 then

begin add w to end of NGU;

TEST(w) +- I
end

14

Since ROOT is the pointer to the starting vertex v of connected component G(U)
and LEAF is the pointer to the last vertex placed on array QUEUE, at the comple-
tion of the call to procedure component(v) we have

IUI = LEAF - ROOT+1.

We use the integer RANKU in dfs to compute lUI.

The integer RANKE (initialized in dfs and computed in the recursive procedure
component(v)) keeps count of the edges encountered in a connected component
computed by dfs. Therefore if G(U) denotes a connected component of G(V-S),
then at the completion of G(U) in dfs we must have RANKE = 21E(U)I since the
depth-first search method encounters every edge of an undirected graph exactly
twice (Aho et al., 1976). Therefore a connected component G(U) computed by dfs is
a clique if and only if the following equality holds

RANKE = RANKU x (RANKU -1),

since a clique with IUI vertices will have IUI x (IUI - 1)/2 edges. This equality consti-
tutes the algebraic relation we use (in procedure classify) for categorizing the con-
nected components of the induced subgraph G(V-S) as cliques graphs and non-
cliques graphs.

While computing a connected component G(U) in procedure component(v), we
also compu.e a set of vertices NGU defined by

NGU = {w e V - Ul w is adjacent to a vertex in U).

The set NGU consists of all vertices in V-U that are adjacent to some vertex in U.
We call the set of vertices NGU the neighborhood of U in G. The single array NGU
(initialized to empty in dfs and computed in component(v)) stores the vertices in the
neighborhood NGU one at a time. We use the Boolean array TEST in component(v)
to ensure that no vertex in the set NGU is added more than once to the array NGU.
We assume the Boolean array TEST contains all O's initially.

At the completion of the recursive procedure component(v) in dfs, we use the
integer RANKN to compute the size of the neighborhood NGU and we reset the
Boolean array TEST so that all the l's in TEST are set back to zero. Subsequently
we call procedure classify to execute step 3 of our method.

15

7. CLASSIFYING CLIQUE CONNECTED COMPONENTS OF G(V-S)

This section classifies the cliques in a graph G = (V, E) into four distinct types
with the interior cliques forming one of these four types. The result leading to this
classificatnn of cliques is given next.

Theorem 4. For any U c V in G = (V, E), G(U) is an interior clique if and only if
the following three conditions are satisfied:

(a) for any u E U, adjGu = NGU u (U - (u0),
(b) for any v e NGU, v is adjacent to all other vertices in NGU,
(c) for any u r U and any v = NGU, degGu < degGv.

Proof Suppose conditions (a), (b), and (c) hold. By condition (a), each vertex
in U is adjacent to all vertices in NGU and all other vertices in U. Thus by the
combination of conditions (a) and (b), each vertex in the set of vertices
C defined by C = U u NGU is adjacent to ail other vertices in C. This means that
the induced subgraph G(C) is a clique. Furthermore, by condition (a) we have
adjGu = C - {u}, for all u in U, which means that

degGu = IC - 1, for any u e U,

and so we obtain U a int(C). But by condition (c), no vertex in NGU can be in the set
int(C), and so we have U = int(C), which means that G(U) is an interior clique.

Suppose G(U) is an interior clique. Then there is in G a clique G(C) such that
U = int(C). This means that adjGU = C - {u) for any vertex u in U, and so we get
NGU = C - U. Subsequently, by combining these two equalities, we obtain the
statement in condition (a). Also, since G(C) is a clique and NGU C C, we obtain the
statement in condition (b). Finally, since NGU = C - U and degGu < degGv for any
vertex u in U and any vertex v in C-U, we have the statement in condition (c). This
completes the proof of the theorem.

As an immediate consequence of Theorem 4, we obtain the following series of
results pertaining to the set of vertices S defined in Corollary 3.1.

Corollary 4.1. Let G(U) be any connected component of G(V-S). Then G(U) is an
interior clique if and only if conditions (a) and (b) in Theorem 4 hold.

Proof. Suppose conditions (a) and (b) in Theorem 4 hold. Assume for contradic-
tion that condition (c) in Theorem 4 does not hold. Then for some vertex u in U and
some vertex v in NGU we have degGu Ž degGv. But by conditions (a) and (b) we

16

have U Q int(C). This means that u E int(U) and so we obtain v E int(C) since
degGv < degGu. However, as G(U) is a connected component of G(V-S) we have
NGU Q S, which means that vertex v is also in S. But this is a contradiction since
by Corollary 3.1 no vertex in V can be in both S and int(U). Therefore, condition
(c) holds and so by Theorem 4 the connected component G(U) is an interior
clique.

Suppose G(U) is an interior clique. Then by Theorem 4 both conditions (a) and
(b) hold. This completes the proof of the corollary.

Corollary 4.2. Let G(U) be any connected component of G(V-S). Then G(U) is an
interior clique if the following two conditions hold.

(a) G(U) is a clique,
(b) INGUI = 1.

Proof. Suppose conditions (a) and (b) hold. Since NGU is nonempty, there is a
vertex u in U and a vertex v in NGU such that u is adjacent to v. By condition (a)
vertex u is adjacent to all other vertices in U. By condition (b) vertex u is not adja-
cent to any vertex in V - U - NGU and so we get degGu = JUJ. Assume now for con-
tradiction that there is a vertex u' in U such that u' is not adjacent to vertex v. Then
u' is not adjacent to any vertex in V - U - NGU since NGU = {v}, and so by condition
(a) we get degGu' = 1U1 - 1. Also, by condition (a) vertex u is adjacent to u' and so
(u, u') is an edge in E with degGu' < degGu, which means that u is a vertex in the set
of vertices S. However, this is a contradiction since u is a vertex in U and G(U) is a
connected component of the induced subgraph.G(V-S). Therefore, each vertex in U
has degree JUI and so adjGu = {v} U U - {u) = NGU u (U - {u}) for all u in U. Therefore
condition (a) in Theorem (4) holds. Also, condition (b) in Theorem 4 holds since
NGU consists of a single vertex. Consequently, by Corollary 4.1 the proof is com-
plete.

Corollary 4.1 classifies each clique G(U) in a graph G into one of four distinct
types. These are as follows: Type C1 - G(U) satisfies both conditions (a) and (b);
Type C2 - G(U) satisfies condition (a) and not (b); Type C3 - G(U) satisfies condition
(b) and not (a); and Type C4 - G(U) satisfies neither condition (a) nor (b). Figure 3
gives the roadmap of connections between these four types of cliques. We call the
cliques of types C1 and C2 semi-interior cliques, whereas cliques of type C2 are
called strictly semi-interior. By these definitions, all cliques in a graph are either
semi-interior or nonsemi-interior. Moreover, If any clique G(U) is semi-interior, then
G(U) is either interior or strictly semi-interior.

17

Clique G(U)

condition (a) condition (a)
holds does not hold

CI&C2~ ~ / C&C4

1 2C 3 4(semi-interior)1
non semi-interior)

condition (b) condition (b) condition (b) condition (b)
holds does not hold holds does not hold/ \ /\

C C C C1 2 3 4
(interior) (strictly semi-interior)

Figure 3. The roadmap linking the four distinct types of cliques in a graph.

Our next result gives a simple necessary and sufficient condition for the exis-
tence of a semi-interior clique. This condition forms the key algebraic relation for
finding all semi-interior cliques in the induced subgraph G(V-S).

Corollary 4.3. For any U c V in G = (V, E), G(U) is a semi-interior clique if and
only if the following condition holds.

degGu = INGUI + IUI - 1, for all u E U.

Proof. Suppose G(U) is a semi-interior clique. Then condition (a) in Theorem 4
holds and thus the assertion holds.

Assume now the assertion in the corollary holds. Then for any u in U, we get
ladjGul = INGUI + IUI - 1, and so we have ladjGul = INGUI + IU - {u}l. But by the def-
inition of NGU, the two sets of vertices NGU and U are disjunct Therefore we obtain
ladjGul = INGU v (U - {u))I, and so condition (a) in Theorem 4 holds. This completes
the proof.

The algebraic relation in Corollary 4.3 is obtained in the process of computing
the connected components of the induced subgraph G(V-S), and so the entire fam-
ily of semi-interior cliques in the induced subgraph G(V-S) is readily computed by
applying the equality in Corollary 4.3 to each vertex u in a clique connected com-
ponent of G(V-S).

18

The categorization of the connected components of G(V-S) into cliques and
noncliques and the computation of the family of semi-interior cliques in G(V-S) are
carried out in the algorithm presented below.

procedure classify:
If RANKE = RANKU x (RANKU-1) then

If RANKN = 1 then
add 1 to end of TYPE

else
for each u on QUEUE(ROOT:LEAF) do

If DEG(u) * RANKN+RANKU-1 then
add 3 to end of TYPE

else
add -2 to end of TYPE

else
begin

add 0 to end of TYPE
for each u on QUEUE(ROOT:LEAF) do

mark u "new";
cliques

end

At the invocation of classify, ROOT is the pointer to the starting vertex of the
connected component G(U) on QUEUE, and LEAF is the pointer to the last vertex
and no QUEUE(ROOT:LEAF) forms the part of array QUEUE containing the set of
vertices U. The single array TYPE provides all information on whether a connected
component G(U) of G(V-S) is a clique or not, and on what type of clique G(U) is. If
G(U) denotes the kth connected component computed by dfs, then we use the
following convention in procedure classify to categorize and classify connected
components.

(0 G(U) is not a clique
1 G(U) is an interior clique (type CI)

TYPE(k) 2 G(U) is a strictly semi-interior clique (type C2)
-2 G(U) is a semi-interior clique (type C1 or C2)

13 G(U) is a clique of either type C3 or type C4

The initial task in procedure classify is to categorize the connected components
of G(V-S) into cliques and noncliques. For any connected component G(U) of
G(V-S), if RANKE * RANKU x (RANKU -1), then G(U) is not a clique. Subsequently,
we add 0 to the end of array TYPE, mark all vertices in U "new," and then call pro-
cedure cliques to compute independent cliques in G(U). Since our immediate
interest is to classify the clique components of G(V-S), we defer the description of
procedure cliques to later on.

Assume the equality RANKE = RANKU x (RANKU -1) holds. Then the connected
component G(U) is a clique. At this stage, procedure classify proceeds with the
application of Corollaries 4.2 and 4.3 to G(U).

19

If INGUI = 1, then both conditions in Corollary 4.2 are satisfied, which means
that G(U) is an interior clique. Subsequently, we add 1 to the end of array TYPE
and return to the calling procedure dfs to compute the next connected component.

Suppose INGUI > 1. Then condition (a) in Corollary 4.2 does not hold. We then
proceed with the application of Corollary 4.3 to G(U). If the equality in Corollary 4.3
does not hold, then G(U) is not a semi-interior clique, which means that G(U) is
neither an interior clique nor a strictly semi-interior clique. Subsequently, we add 3
to the end of array TYPE and return to the calling procedure dfs. Assume the
equality in Corollary 4.3 holds. Then G(U) is a semi-interior clique. Subsequently
we add -2 to the end of array TYPE and return to 1,he calling procedure dfs.

At the completion of procedure dfs, the computation of all semi-interior cl..ues
in the induced subgraph G(V-S) is complete.

7.1. MATRIX INTERPRETATION OF THE CLIQUE CLASSIFICATION

Let M be any square symmetric matrix, and let P be any permutation matrix such
that PMPT is a 2-by-2 block matrix

pMpT = A~ B] (5)

in which the leading block A (called henceforth the pivot block) is ..quare and non-
singular. Assume now that there exists an upper triangular matrix U with nonzero
diagonal entries such that

A= uTU. (6)

Then the block matrix PMPT can be written in the block product form

pMpT [� 0][0U X)
PMT= LXT I 1LO D-XTXJ (7)

in which I is an identity matrix, the O's are zero matrices, and the block X is the
solution of the following triangular system with multiple right-hand sides

UTX = B. (8)

The matrix D - XTX is the familiar Schur complement of A in PMPT. The correctness
of the block product form (7) can be verified by multiplication.

In the majority of sparse matrix problems, the blocks B and D in the 2-by-2 block
matrix PMPT are sparse matrices whereas their counterparts X and D - XTX in the
product form of PMPT can be extremely dense if the permutaion matrix P is not
chosen carefully. The sparser the block X and the Schur complement D - XTX are,
the more efficient is the computation process.

20

Given any block diagonal pivot block A with full diagonal blocks, we show that
the sparsity of block X and the Schur complement D - XTX are fully dictated by the
clique classification presented earlier. But first we need new notation.

For any square or nonsquare matrix H, the structure of H is a 0 - 1 matrix str(H)
obtained by replacing each nonzero entry of H with '1.'

With this notation, it is easy to see that the block X and the Schur complement
D - XTX have the same sparsity as the blocks B and D if and only if str(X) = str(B)
and str(D - XTX) = str(D), respectively.

Suppose G = (V, E) is the graph of the symmetric matrix M, and let C be the set
of vertices in V representing the rows of the pivot block A in PMPT. Then for the
case where the pivot block A is a full matrix (or when G(C) is a clique), we have
the following result pertaining to the structures of block X and the Schur com-
plement D - XTX. We assume no cancellation of nonzero elements takes place
in equation (7).

Theorem 5. Suppose G(C) is a clique. Then the following statements are true.

(a) If G(C) is type C1 clique (interior), then

str(X) = str(B),
str(D - XTX) = str(D).

(b) If G(C) is type C2 clique (strictly semi-interior), then

str(X) = str(B),
str(D - XTX) * str(D).

(c) If G(C) is type C3 clique, then
str(X) * str(B),

str(D - XTX) = str(D).

(d) If G(C) is type C4 clique, then
str(X) * str(B),

str(D - XTX) * str(D).

Proof. Suppose the clique G(C) is semi-interior. Then G(C) is either a type C1
clique or type C2. Assume for contradiction that str(X) * str(B). Then for some row i
and some column j of blocks X and B we have x1, * 0 and bij = 0. Thus, there exists a
vertex u in C and a vertex v in NGC such that the pair (u, v) is an edge in the com-
plement G* of G. This means that the pair (u, v) is not an edge in E. But this is a
contradiction since each vertex of any semi-interior clique G(U) is adjacent to every
vertex in the neighborhood of U. Therefore, the first equality in both statements (a)
and (b) holds. As a direct consequence, the first equality in statements (c) and (d)
will also hold since type C3 and type C4 cliques are nonsemi-interior cliques.

21

Now suppose G(C) is any clique such that G(NGC) is a clique. Then the clique
G(C) is either type C1 or type C3. Assume for contradiction that str(D - XTX) * str(D).
Then there exist two distinct vertices v and w in NGC such that the pair (v, w) is an
edge of the complement G* of G, which means that (v, w) is not an edge in E.
However, this is a contradiction since G(NGC) is a clique. Thus the second equality
in both statements (a) and (c) holds. As a direct consequence, the second equality
in statements (b) and (d) will also hold since for any type C2 and any type C4 clique
G(U) the induced subgraph G(NGU) is not a clique. This completes the proof of
statements (a) through (d).

Figure 4 gives a graphical illustration of Theorem 5 by showing the block X and
the Schur complement D - XTX in dark whenever str(X) * str(B) and str(D - XTX)
str(D), respectively.

U X U X U X U X

D- xTX D XTX D- xTX D- xTX

2 C C

Figure 4. A graphical illustration of Theorem 5.

8. COMPUTING INDEPENDENT CLIQUES IN A
NONCLIQUE CONNECTED COMPONENT

Given any nonclique connected component G(U) of the induced subgraph G(V-
S), procedure cliques computes a vertex partition

II = (U1 , U2 , ... , Ut, S'), (9)

satisfying the following two conditions:

(1) G(Uj) is a maximal clique in subgraph of G induced by the set of vertices

i-1

Yj = U- U (Uk U NG(u)Uk), i 2,..., t,
k-1

(2) each u in S' is a vertex in the neighborhood of some Ui in the partition.

22

By condition (1), G(U1) is a maximal clique in G(Y1) (where Y1 = U), G(U 2) is a
maximal clique in G(Y2) and such that no vertex in U2 is adjacent to a vertex in U1,
G(U 3) is a maximal clique in G(Y3) and such that no vertex in U3 is adjacent to a
vertex in both U1 and U2 , and so forth. This means that the t cliques computed in
procedure cliques are independent cliques with maximality properties as defined in
condition (1). By condition (2), no part of the connected component G(U) contains a
clique that is independent of the cliques G(Ui) through G(Ut), and so procedure
cliques computes as many independent cliques as possible.

The independent cliques computed in procedure cliques are initially placed one
at a time on a single array CLOS (shortening for cliques) while the set of vertices S'
is placed on another single array NBRS (shortening for neighborhoods). At the
completion of the vertex partition n' , the part of array QUEUE containing the set of
vertices U is replaced by the array [CLQS, NBRS].

To begin with, procedure cliques uses the starting vertex of the connected com-
ponent G(U) as the starting vertex of the first independent clique that gets com-
puted in cliques. This way the pointer ROOT to the starting vertex of G(U) becomes
the pointer to the starting vertex of the first independent clique placed on array
QUEUE. The pointers to the starting vertices of the remaining t elements of the
vertex partition are determined while computing the partition and are placed on the
array IQUEUE. The entire algorithm is as follows.

procedure cliques:
begin

CLQS .- empty;
NBRS -empty;
CLQROOT +- ROOT;
TAIL +- 0 ;
for each v on QUEUE(ROOT:LEAF) do

If v is marked "new" then
begin

mark v "old";
ADJCNT +- empty;
maxclq

end;
QUEUE(ROOT:LEAF) +- [CLQS, NBRS]

end

The integer CLQROOT determines the pointers to the starting vertices of the t+1
elements of the partition. Initially, CLQROOT is set to ROOT since the starting vertex
of the connected component G(U) is also the starting vertex of the first independent
clique placed on array QUEUE. The integer TAIL is used as the pointer to the most
recent vertex placed on array CLQS. Since CLQS is initially empty, the integer
TAIL is set to zero.

23

The initial task of procedure cliques is to select the starting vertices of the t
independent cliques. Initially, all vertices on QUEUE(ROOT:LEAF) are marked
"new." The first vertex v selected in the for loop is QUEUE(ROOT), which is the
starting vertex of the connected component G(U). In general, suppose v is the most
recently visited vertex in cliques. If v is marked "old," then vertex v was visited in
cliques previously and so cliques picks the next vertex on QUEUE(ROOT:LEAF).
Suppose v is marked "new." Then procedure cliques marks vertex v "old" (v is thus
a 'visited' vertex in cliques); initializes the single array ADJCNT to empty and lastly
it calls procedure maxclq.

The main objective of procedure maxclq is to compute an independent clique
with starting vertex v. If v is adjacent to some vertex w in a previously computed
independent clique (w is on array CLQS), then v is rejected in maxclq as a starting
vertex. Subsequently, maxclq returns to procedure cliques to select another start-
ing vertex. Otherwise the vertex v, selected in cliques, becomes the starting vertex
of the next independent clique computed in procedure cliques. To distinguish
between vertices placed on the two arrays CLQS and NBRS, procedure maxclq
uses the Boolean array SN setting SN(u) = 1 if and only if a vertex u in U is placed
on array NBRS. The entire procedure maxclq is as follows.

24

procedure maxclq:
begin

for each vertex w on ADJ(v) do
If SN(w) = 0 then

if w is marked "new" then
add w to end of ADJCNT

else
begin

comment v is rejected as starting vertex;
add v to end of NBRS;
SN(v) -- 1;
return

end;
comment v is accepted as starting vertex;
add v to end of CLQS;
TEST(v) I- 1;
RANKC- 1;
for each vertex u on ADJCNT do

begin
COUNT +- 0;
mark u "old";
for each vertex w on ADJ(u) do

if TEST(w) = 1 then
COUNT <- COUNT+1;

if COUNT = RANKC then
begin

add u to end of CLQS;
TEST(u) <- 1;
RANKC -- RANKC+1

end
else

begin
add u to end of NBRS;
SN(u) +- 1

end
end;

HEAD +- TAIL+1;
TAIL +- TAIL+RANKC;
for each u on CLQS(HEAD:TAIL) do TEST(u) 4- 0;
CLQROOT+- CLQROOT+RANKC;
add -CLQROOT to end of IQUEUE

end

25

The acceptance or rejection of vertex v as a starting vertex is accomplished in
the top for loop in maxclq. If v is rejected as a starting vertex, maxclq returns to
cliques to select the next starting vertex. If v is accepted, then the computed array
ADJCNT contains every vertex in the independent clique that has v as its starting
vertex. To show this, let w be any vertex on ADJ(v). Then one of the following two
cases must hold.

Case 1. SN(w) = 1. Then w is either in S or on the array NBRS. If w is in S then
w is not in U. If w is on NBRS, then w is not a vertex in a previously computed inde-
pendent clique and so v is not rejected as a starting vertex. Therefore if SN(w) = 1,
maxclq continues with the processing of the top for loop by visiting the next vertex
on ADJ(v).

Case 2. SN(w) = 0. Then w is in the set U. If w is marked "new," maxclq places w
on the array ADJCNT and continues with the processing of the loop by visiting the
next vertex on ADJ(v). Suppose w is marked "old." Then vertex w has already been
visited in procedure cliques and so w is either on array CLOS or on array NBRS.
But since SN(w) = 0, vertex w is not on array NBRS and so w has to be on array
CLQS. This means that v is adjacent to a vertex in a previously computed indepen-
dent clique and so v is a vertex in the neighborhood of a previously computed
independent clique. Consequently, maxclq rejects v as a starting vertex by placing
v on array NBRS; setting SN(v) to 1 and then returning to procedure cliques to
select the next starting vertex v on array QUEUE(ROOT:LEAF).

To distinguish between previously computed independent cliques and the cur-
rently computed independent clique, maxclq uses the Boolean array TEST setting
TEST(u) = 1 if and only if vertex u is in the currently computed independent clique.
The size of the most recently computed independent clique is determined using the
integer RANKC. Thus when vertex v is added to CLQS at the completion of the top
for loop (that is when v is accepted as starting vertex), TEST(v) is set to 1 and also
RANKC is set to 1 since v is the very first vertex of the currently computed indepen-
dent clique placed on array CLQS.

The computation of the independent clique with starting vertex v is completed
with the aid of the second for loop in maxclq. Let C denote the set of vertices
added to array CLOS at the most recent call to maxclq. Then at the completion of
each pass of the second for loop we have COUNT = I C n ADJ(u) I since C = { x r
V I TEST(x) = 1}. But by the construction of the integer RANKC we have RANKC =
JCI and so if the condition COUNT = RANKC is satisfied in the loop, then C Q
ADJ(u), which means that vertex u is adjacent to each vertex in C, or equivalently,
u is a vertex in the indpendent clique with starting vertex v. Hence if the condi-
tion COUNT = RANKC is satisfied, maxclq adds u to the array CLQS; sets
TEST(u) to 1 and RANKC to RANKC+1 and then it continues with the process-
ing of the loop. Suppose COUNT * RANKC. Then vertex u is not adjacent to
every vertex in C and so u is not a vertex in the independent clique that has v as
starting vertex. However, u is adjacent to the starting vertex v, which means that
u is a vertex in the neighborhood of the indepedent clique with starting vertex v.
Consequently, maxclq adds u to the array NBRS; sets SN(u) = 1 and then con-
tinues with the processing of the for loop.

26

At the completion of the second for loop, the induced subgraph G(C) denotes
the most recently computed independent clique. However, at the next call to
maxclq, G(C) is a previously computed independent clique and so we need to reset
the Boolean array TEST since each vertex u in a previously computed independent
clique has TEST(u) = 0. Accordingly, procedure maxclq computes the integers
HEAD and TAIL (pointers to the starting vertex and last vertex of G(C) on array
CLQS, respectively), and then it uses them to reset the array TEST.

At the start of procedure maxclq, CLQROOT is the pointer to the starting vertex v
of the independent clique G(C) computed at the finish of maxclq, and so the pointer
to the starting vertex of the next independent clique is CLQROOT+RANKC since
RANKC = 1C0. The computation of the pointer CLQROOT to the next starting vertex
is carried out in the one before the last statement in maxclq. It is worth noting that if
G(C) is the last independent clique in G(U), then the integer CLQROOT computed
in maxclq is the pointer to the starting vertex of the vertex set S' on array QUEUE.
The last statement in maxclq adds the pointer CLQROOT (with a '-' appended to it)
to the array IQUEUE. The '-' part of CLQROOT is used for distinguishing pointers
added to IQUEUE in maxclq from pointers added to IQUEUE in procedure dfs. At
the completion of maxclq, the program returns to procedure cliques to compute the
next independent clique in G(U).

At the completion of the for loop in cliques, the computation of the partition -I is
complete. The array CLQS contains the sets of vertices U1 through Ut in that order,
while the other array NBRS contains the set of vertices S'. At this point, procedure
cliques replaces the part QUEUE(ROOT:LEAF) of array QUEUE by the structured
array [CLQS, NBRS] and returns to procedure dfs to compute the next connected
component of the induced subgraph G(V-S).

9. COMPLEXITY OF PARALLELIZATION TOOL ROADMAP

Procedures search, dfs, classify, and cliques dictate the computational
complexity of our parallelization tool. We will analyze the complexities of these four
procedures individually to prove the linear-time complexity of the parallelization
tool.

Procedure search visits each vertex in V exactly once, and each edge in E at
most twice. Thus the total time spent in search is proportional to the number of
vertices in V plus the number of edges in E.

If we exclude the call to classify in procedure dfs, then dfs is an implementation
of the depth-first search method (Tarjan, 1972) for computing all connected
components of the induced subgraph G(V-S). Thus the total time spent in dfs,
excluding calls to classify, is proportional to the number of vertices in V plus the
number of edges in E.

For each connected component G(U) computed in roadmap, procedure dfs calls
classify. At the invocation of classify, the integer ROOT is the pointer to the starting
vertex of G(U) and LEAF is the pointer to the end vertex. One of the following two
cases must hold:

27

(a) G(U) is a clique. Then procedure classify applies both Corollaries 4.2 and
4.3 to G(U). The time required to apply Corollaries 4.2 and 4.3 is a constant plus
time proportional to the size of the array U. Thus the time spent in classify is a
constant plus time proportional to the number of vertices on U.

(b) G(U) is not a clique. Then classify calls procedure cliques. For each vertex v
in U marked "new," cliques marks v "old," initializes array ADJCNT to empty and
then calls procedure maxclq. In the top for loop of maxclq, every edge incident with
v is visited at most once. If v is rejected as a starting vertex, maxclq returns to
cliques to pick another vertex, which is marked "new." If v is accepted as a starting
vertex, then maxclq computes an independent clique G(Ui) with starting vertex v.
The computation of the set Ui - {v) is accomplished by visiting each vertex on the
array ADJCNT exactly once. For each u on ADJCNT, maxclq visits every edge
incident with u exactly once. At the completion of the independent clique G(Ui),
maxclq visits every vertex of G(Ui) once more in order to update the Boolean array
TEST. Subsequently, maxclq returns to cliques to pick the starting vertex of the next
independent clique. Note that all vertices placed on array ADJCNT are marked
"old" at the completion of the call to maxclq, and so no vertex in V has its edges
visited more than once. Also, no vertex in V is placed on the arrays ADJCNT and
NBRS more than once since each vertex placed on ADJCNT must b e marked
"new," and each vertex placed on the array NBRS must have separator number
equal to 1. Therefore, the total time spent in maxclq is a constant plus time
proportional to the number of vertices in U plus the number of edges in E(U). At the
completion of the for loop in cliques, each vertex in U is visited once more to
reorder U on array QUEUE. Therefore, the total time spent in cliques including all
calls to maxclq is a constant plus time proportional to the number of vertices in U
plus the number of edges in E(U).

By construction, the sets of vertices and the sets of edges in the connected
components of G(V-S) form partitions of the vertex set V-S and the edge set E(V-S),
respectively. Thus the total time spent in dfs including all calls to classify is a
constant plus time proportional to the number of vertices in V plus the number of
edges in E, and thus the parallelization tool has linear-time complexity. This
completes the complexity analysis.

10. MATRIX INTERPRETATION OF VERTEX PARTITION

For any graph G = (V, E), let S be the set of vertices computed in procedure
search and let G(V1) through G(Vk) denote the connected components of G(V-S)
computed in procedure dfs. By construction, the (k+W) tuple n defined by

l=(v1 ,v2, ... , Vk, S) (10)

is a vertex partition in G. However, this vertex partition is distinctly different from an
arbitrary vertex partition in G since no vertex in any element Vi of the partition n is
adjacent to a vertex in any other element Vi of the partition. By this property of the
vertex partition n it follows that the graph Gn with respect to n takes the star-
shaped form shown in figure 5 with S as the root vertex and V1 through Vk as the
leaf vertices.

28

Figure 5. The graph Gn with respect to partition n.

Suppose G is the undirected graph of the n-by-n symmetric matrix M, and let Aji
be a square principal submatrv in M such that its rows correspond to the vertices in
the ith element Vi of the -rtex partition n. Then by the structure of the star-shaped
graph Gn, there exists a, rmutation matrix P such that PMPT has the following
(k+l)-by-(k+1) block form

"All BI"

A22 B2

PMPTAkkBk

BTBT... BT D
L1 2 k

Since the set of vertices V-S consists of the union of the sets V1 through Vk, the
rows of the diagonal block D in PMPT correspond to the vertices in the set S.

The origins of block bordered diagonal matrices can be traced to early works of
Gabriel Kron (1958). In recent years, the use of block bordered diagonal forms in
scientific and engineering computing has become an area of active research
(Zhang et al., 1992). A main motivation has been the exploitation of parallelism
using parallel architecture computers. The methodologies used for computing
block bordered diagonal forms comes under a variety of names depending on the
particular discipline. Examples include clustering (power system network problems
[Ogbuobiri et al., 1970] and electrical circuits analysis and synthesis [Branin, 1975;
Chua & Chen, 1976]), substructuring (structural engineering [Noor, Kamel, and
Fulton, 1978]), macromodeling (VLSI circuit design [Rabbat, Sangiovanni-
Vincentelli & Hsieh, 1979]) and domain decomposition [Chan et al., 1989;
Glowinski et al., 1992] (solution of partial differential equations). In most of these
methodologies, matrices are cast into block bordered diagonal forms by relying
on the expertise of the modelers in the given discipline. In very special cases
such as when the underlying graph of the problem is planar, block bordered
diagonal forms can be obtained using nested dissection (George, Poole, and
Voigt, 1978). The method developed in this work produces block bordered

29

diagonal forms for all types of graphs, and without any reliance on human
expertise.

Without any loss of generality, assume the connected components G(V1)
through G(Vp) are cliques and the remaining components G(Vp+i) through G(Vk)
are not cliques. Then the leaf vertices of the graph Gn can be grouped into two
disjunct parts as shown in figure 6.

cliques of type C1 through C4 nonclique components

Figure 6. Categorization of leaf vertices of graph Gn into cliques
and noncliques.

The key objective of the procedure cliques is to explore the underlying structure
of each nonclique connected component of G(V-S). Through this application of
procedure cliques, the following two changes occur in the graph Gn. First, the
number of leaf vertices (parallel regions) will generally increase. Second, the
graph corresonding to each leaf vertex of Gr is a clique. This way we obtain
another star-shaped graph of the form in figure 5, where each leaf vertex corre-
sponds to a clique in G.

To illustrate this part of the work, let G(U) denote the nonclique connected
component G(Vp+I) of the induced subgraph G(V-S). Then by replacing the
(p+l) th element of the vertex partition n in equation (10) by the vertex partition n'
in equation (9), we obtain another vertex partition n" defined by

" -- (VI., Vp, U1., Ut, S, Vp+2, .,Vk, S)

30

The graph Gn- with respect to this new vertex parttition n" is shown in figure 7.

Vp+t

Figure 7. The graph Gn", with respect to the partition n".

By the structure of the star-shaped graph Gn-, it is evident that if the elements S
and S' of the partition n" are combined together to form the following vertex parti-
tion

l.""= (V,..., Vp, U1,..., Ut, Vp+2, ... ,Vk, S U S'),

then the graph Gn,- with respect to the new vertex partition n"' takes the star-
shaped form shown in figure 8 with SUS' as the root vertex and VI, ... , Vp, U1,...,
Ut, Vp+2 , ... , Vk as the leaf vertices.

cliques of type C 1 through C4 nonclique components

Figure 8. The graph Gn,- with respect to the partition n"'.

31

Comparison of the graphs Gn and Gn,,, provides a number of worthwhile facts.
To begin with, both Gn and Gn,,, are star-shaped graphs. The graph Gn-,, however,
has additional t-1 leaf vertices and such that each of these leaf vertices corre-
sponds to a clique in G. Furthermore, the formation of the graph GnI,,, eliminates a
leaf vertex corresponding to a nonclique connected component of G(V-S), and so
by applying the procedure cliques to the remaining p -1 nonclique connected com-
ponents of G(V-S), we must obtain a partition n* such that Gn* is a star-shaped
graph in which every leaf vertex corresponds to a clique in G.

To derive the partition n*, let Si denote the set of vertices placed on array NBRS
at the end of the application of procedure cliques to the nonclique connected com-
ponent G(Vi) and let S* be the set of vertices defined by

kS*=SU(U Se).

Then we have the following result.

Theorem 6. For any graph G = (V, E), the set of vertices S* satisfies the following
two conditions.

(a) Every connected component of G(V-S*) is a clique.
(b) Every interior clique in G is a connected component of G(V - S*).

Proof Condition (a): Let G(Vi) be any nonclique connected component of G(V-
S). Then by the construction of the vertex set Si, every connected component of the
induced subgraph G(Vi - Si) is a clique, for i = 1, ... , k, and so the proof of statement
(a) is complete since G(Vp+I) through G(Vk) form the nonclique connected compo-
nents of G(V-S).

Condition (b): This follows immediately from Corollary 3.1 since S c S*.

This completes the proof.

By construction, each of the p cliques G(Vi) through G(Vp) is a connected com-
ponent of G(V-S*), and so by letting G(VI) through G(Vq) denote the remaining
connected components of G(V-S*) it follows that the set of veilex sets n* defined by

n* = (V1, ... ,Vp, V1,... Vq, S*)

is a vertex partition in G and furthermore, the graph Gn• with respect to n* has the
star-shaped form shown in figure 9 where each leaf vertex corresponds to a clique
in G. Note that if we let r = p+q and Vi = Vp+i, for i = 1, ... ,q then we have the vertex
partition n* introduced in the introduction of the work.

32

dqclues of type C1 through C4

Figure 9. The graph Gn* with respect to the partition n*.

To establish the matrix interpretation of the partition n*, let Aii be a square block
in M such that its rows correspond to the vertices in the set Vi for i =1, ... , q. Also, let
DI1 and D22 be square blocks such that the rows of Di1 correspond to the vertices
in the set (Sp+l U ... U Sk), while the rows of D22 correspond to the vertices in S.
Then by the structures of the star-shaped graphs in figures 7 through 9, there exists
a permutation matrix P such that PMPT is a block bordered diagonal matrix of the
following form

"Al B1A1 1 12

"App B p2
All B6l B12

PMpT .12 (12)
A B B

qq qi q2

BT... BTD DIlI q1 11 12

BT... BT BT-..BT DT D
12 p2 12 q2 12 22)22

Since each leaf vertex of Gr* corresponds to a clique in G, all diagonal block in the
leading (p+q) by (p+q) block diagonal matrix in PMPT are full matrices.

There are several ways in which the block matrix PMPT in (12) can be used in
the solution of linear symmetric systems of equations. One approach is to choose
the p-by-p leading block diagonal matrix in PMPT as the pivot block A. This way,
the Schur complement D - XTX will be a block bordered diagonal matrix with a
q-by-q leading block diagonal matrix. Another way is to choose the (p+q)-by-
(p+q) leading block diagonal matrix in PMPT as the pivot block A. The choice
between these two alternative pivot blocks and others will depend on the
parameters p and q, the number of available processors in a parallel machine,
as well as the sizes of the diagonal blocks in the pivot block.

33

11. SOLUTION STRATEGY USING STRUCTURED MATRIX

For any permutation matrix P, the system of equations Mx = b is equivalent to
the following system of equations

(PMPT)(pTx) = (Pb). (13)

Consider this system where PMPT has been factored into the block product form in
equation (7), and the vectors PTx and Pb have been partitioned conformably into
the direct sums of y and z, and f and h, respectively. The system of equations (13)
then becomes [DXTX)[=L[h-XwJ (1 4-a)

where
UTw= f. (14-b)

So by combining equations (8) and (14) we obtain the following systems of equa-
tions

uT[X w]=[B f], (15-a)
[D- xTX] z = h- XTw, (15-b)

U y =w- Xz. (15-c)

The system of equations (15-a) is a lower triangular system with multiple
right-hand sides. The solution of this system provides the block X and the vector w.
Subsequently, the solution of the system of equations (15-b) provides the vector z,
which is part of the unknown vector x. Lastly, the soiution of the system of equations
(15-c) yields the remaining part y of the unknown vector x.

The solving of a triangular system with multiple right-hand sides in equation
(15-a) and the rank-k matrix update D - XTX in equation (15-b) form two of the three
fundamental linear algebra operations that are referred to as Level 3 operations
(Anderson et al., 1992). The other Level 3 operation concerns matrix-matrix multi-
plication. For many high-performance computer architectures, and especially those
with complex memory hierarchies, Level 3 operations are extremely desirable from
a computation standpoint since they require the loading and storing of 0(n2) data
while involving 0(n3) computations. This favourable computation-to-communication
ratio significantly redunes traffic between various memory hierarchies and conse-
quently leads to a methodology for the development of fast algorithms on high-
performance computers. In contrast to Level 3 operations, the other linear algebra
operations such as vector-vector operations (Level 1) and matrix-vector operations
(Level 2) require the loading and storing of 0(n) data and 0(n) computations or

34

O(n 2) data and 0(n2) computations, respectively. This means that Level 1 and
Level 2 linear algebra operations are unable to accomplish the high ratio of
computation to communication attained by Level 3 operations.

The problem of factoring a matrix into the product of lower and upper triangular
matrices involves a mix of Level 1 and Level 2 linear algebra operations (Anderson
et al., 1992). Thus a key objective in factoring a matrix into the block product form in
equation (7) is to decrease work involving Level 1 and Level 2 linear algebra
operations and increase work that requires Level 3 operations.

Also, the block product form in equation (7) is well-suited for parallel computa-
tion especially when the pivot block A is a block diagonal martix. To see this, con-
sider the case where PMPT has the block bordered diagonal form in equation (11),
the block X has been partitioned conformably into the form-Xl-

X2

X , (16)LX--

and the vectors y, f, and w have been partitioned conformably into the direct sums
of yl through Yk, fI through fk, and wl through Wk, respectively. Then the block
product in equation (6) takes the form

Aii = UT Uii i = 1, ... , k, (17)

and the system of equations (15) becomes

UT[XI wi] = [Bi fi], (18-a)

[D-- =1 xTxi]z=h-_I 1 XTw. (18-b)

Uii Yi = wi X z,i = 1,... , k. (18-c)

The operations in equations (17) and (18) can be tailored to take full advantage of
parallel machines. To begin with, the k diagonal blocks A11 through Akk of the pivot
block A are factored in parallel to produce k upper triangular matrices Ull through
Ukk. Then, a total of k triangular systems with multiple right-hand sides are solved
in parallel to produce the blocks X1 through Xk and the vectors wl through Wk. Next,
the k matrix-matrix multiples X' [X, wl] through X4 [Xk Wk] are computed in parallel
to produce the Schur complement D - XTX and the right hand vector h - XTw in
equation (18-b). The solution of equation (18-b) produces the vector z.
Subsequently, the vector y is obtained using equation (18-c) by solving another k
triangular systems in parallel.

35

12. RECURSIVE EXPLOITATION OF PARALLELISM
IN SPARSE PROBLEMS

Many large complex scientific and engineering problems in government and
industry give rise to block bordered diagonal matrices of the form PMP T in equation
(11) where the Schur complement D-BTA-11B of A in PMPT is also a large sparse
matrix. One such problem concerns the use of barrier methods or interior-point
methods for solving linear programs and nonlinear programs with linear equality
constraints. The application of barrier or interior-point methods to these optimiza-
tion problems gives rise to a sparse symmetric system of equations called the KKT
system (Gill et al., 1991; Gill et al., 1992), in which the coefficient matrix K has the
following 2-by-2 block form

K=[A DAT

where H and A are both sparse matrices and D is either a zero matrix or a strictly
negative diagonal matrix with small diagonal entries.

For general nonlinear programs, the leading block H in the K matrix has no
specific sparsity structure. For linear programs, however, H is a positive diagonal
matrix, which means that the coefficient matrix K in the KKT system is a bordered
diagonal matrix and thus a special case of the block bordered diagonal matrix
PMPT.

Experimental results obtained from the application of the parallelization tool
roadmap to a collection of linear programs* has shown that the Schur complement
D-AH-lAT of H in K is usually a sparse matrix (Kevorkian, in preparation-b).
Moreover, further applications of roadmap to the Schur complements in the linear
programs suggests worthwhile opportunities for parallelism in these large sparse
matrices.

To exploit parallelism in a Schur complement, we must first compute the fill-in
resulting from the use of the pivot block in pMpT. The subject of computing fill-in
has been an area of active research in the seventies and eighties (Rose, Tarjan,
and Lueker, 1976; George and Liu, 1981; Yannakakis, 1981; Tarjan and
Yannakakis, 1984). Among the many methods developed over the years, the
linear-time algorithm devised by Tarjan and Yannakakis (1984) is the most efficient
and easy to implement.

Currently we are working on a recursive version of roadmap (Kevorkian, in
preparation-a) in which all fill-in computations are done using the Tarjan and
Yannakakis algorithm. This recursive version of roadmap exploits parallelism in the
original matrix as well as subsequent Schur complements until no further paral-
lelism remains to exploit.

*Saunders, M. A., and W. Murray, private correspondence, 1992.

36

In the process of developing this extension of roadmap, we have come across
two worthwhile properties of semi-interior cliques. One property relates to speeding
up fill-in computations while the other concerns the computation of interior cliques
in an undirected graph.

Lemma 3. Let G(U) be any semi-interior clique in G = (V, E), and let a be any
ordering of the vertices in U. Then for any vertex u in U, the following equality
holds.

FGa = defGu.

Proof. If IUI = 1, there is nothing to prove since a consists of the single vertex u.
Suppose IUI > 1. If the clique G(U) is interior, we have FGa = o and so the assertion
must hold. Suppose the clique G(U) is strictly semi-interior and let G" = (V, E*) be
the complement of G. Let v and w be any two distinct vertices adjacent to u. If both v
and w are in U, then the pair (v, w) is an edge in E since G(U) is a clique. If v is in U
and w is in NGU, then (v, w) is an edge in E since every vertex in U is adjacent to all
vertices in NGU. Suppose v and w are both in NGU. Then the edge (v, w) is either
in E or E* and so we get

defGu = E*(NGU)

since every vertex in NGU is adjacent to vertex u.

By construction, the graph (NGU, E(NGU) U E*(NGU)) is a clique and so if we let
E' be the set of edges defined by E'= E U E*(NGU), then by Corollary 4.1 it follows
that G(U) is an interior clique in the graph G' = (V, E'). Consequently, by Theorem 2
we get FGa = E' - E = E*(NGU) and so we get the desired relation FGa = defGu.

By Lemma 3, the application of the Tarjan and Yannakakis algorithm to any one
vertex u in a semi-interior clique G(U) produces all fill-in resulting from the applica-
tion of the algorithm to every vertex in U. Computations in (Kevorkian, in prepara-
tion-a) are thus speeded up by applying the Tarlan and Yannakakis algorithm to a
single vertex in G(U) and ignoring all other vertices for all semi-interior cliques.

Our second result pertains to the computation of all interior and strictly semi-
interior cliques in an undirected graph.

Lemma 4. Let a be any ordering of the vertex set V and let (v, w) be any edge in
the set of edges FGI. Then every semi-interior clique of G with a starting vertex
adjacent to both v and w is strictly semi-interior.

Proof. Let G(U) be any semi-interior clique with a starting vertex r adjacent to
both v and w. Then by Lemma 3 both v and w are vertices in the neighborhood
NGU of U and so (v, w) is an edge of the complement G° of G. Thus the subgraph
induced by the vertex set NGU is not a clique and so G(U) is a strictly semi-interior
clique. This completes the proof.

By construction, any semi-interior clique that is not strictly semi-interior is an
interior clique, and so by Lemma 4 we are able to compute all interior and strictly

37

semi-interior cliques in an undirected graph. Details on the implementation of

Lemmas 3 and 4 will be covered in (Kevorkian, in preparation-a).

13. DISTRIBUTION OF WORKLOAD ACROSS PROCESSORS

An important concern in parallel computation is the proper distribution of
workload across the processors of a parallel architecture computer. Ideally, a
workload distribution is sought in which each processor has about the same
amount of workload and in which the interprocessor communications are small.
Unfortunately, the computation of such an idealistic workload distribution is
extremely difficult in practice, especially for problems involving large sparse
symmetric matrices with irregular structures.

Given a vertex partition n* = (V1, V2, ... , Vr, S*) computed by the parallelization
tool roadmap, the sizes of the vertex sets V1 through Vr in n* dictate the workloads
that have to be distributed across the processors of the parallel machine. Now by
the construction of the vertex partition n*, no vertex in any element Vi in n* is
adjacent to a vertex in another element Vi. This means that the interprocessor
communications between the r workloads resulting from the use of the vertex
partition n* are simply absent. However, since our vertex partition algorithm does
not provide any control over granularity of parallelism, the amounts of workloads
distributed across the various processors may vary appreciably and thus degrade
performance.

In subsequent developments we discuss ways for bringing about some control
over the granularity of parallelism needed to adapt to varying numbers of
processors. These discussions are intended to be preliminary. More detailed
coverage of this topic including implementations and applications to real-world
Navy problems will be reported in the near future.

Let PMPT be a block bordered diagonal matrix induced by the vertex partition
n*, and suppose we are given a parallel architecture computer in which nproc
denote -" the number of processors available for the solution of our particular sparse
symmetric system of equations. Since r denotes the number of parallel regions
produced by the vertex partition n*, one of the following two cases must hold.

Case 1. r > nproc. Then we arbitrarily distribute nproc of the total r workloads
across the nproc processors, and continue assigning a workload from the
remaining r - nproc workloads to each processor that completes its designatec;
task. This method should work reasonably well for problems in which none of the r
workloads is significantly larger than the remaining workloads.

Case 2. r < nproc. Let s be the positive integer defined by

s = min IVil,

38

and let Ail be any of the r diagonal blocks in the pivot block A of PMPT. Now let ali
be the leading s by s principal submatrix in Ail. If IVii = s, then all = Ali. Otherwise, we
can write Aii in the following 2-by-2 block form

Aji = Lii• oil

For this discussion, we assume that the original matrix M is positive definite, which
means that the s-by-s leading block ali in the 2-by-2 block matrix Aii is nonsingular.

With this partitioning of the r diagonal blocks in the pivot block A, we are able to
compute r upper triangular matrices U11 through Urr across r processors using the
following factorization.

i = u uii, iT= 1, ... , r. (19)

The workload across the r processors of the parallel machine will be perfectly
balanced during this factorization step since the blocks all through arx are full
matrices of the same size.

Let Bi be any block in the border of PMPT, and suppose we partition Bi into the
2-by-1 block form

such that the block at the top has s rows. Now define the 2-by-2 block matrix

where
Bi = - 131i B,]

and

[8~j B i2]Di= LBT DL-

Then by setting the blocks A, B, and D in the 2-by-2 block matrix PMPT in equation
(5) to ail, Bi and Di , respectively, the block factorization in equation (7) yields

= [Ux10][IIIT] (20)

39

where the block Xi is the solution of the following triangular system with multiple
right-hand sides

UT Y, = Si. i= 1, r. (21)

By construction, the block Bi in equation (21) has s rows and IVil - s + ISil
columns, and so each of the r systems in equation (21) is a triangular system with s
equations. The right-hand sides of these r systems of equations, however, will vary
in size whenever two or more diagonal blocks in the pivot block A have unequal
dimensions. Therefore, to devise a scheme in which each processor solves a
triangular system with s equations and about equal number of right-hand sides, we
introduce the integer K defined by

K=V.1 (MVi- s + ITS).

Then one of the follcwing two subcases must hold.

Subcase 2.1. K < nproc. Then the system of equations in equation (21) gives
rise to K triangular systems of equations, each consisting of s equations and a
single right-hand side. These triangular systems may be solved in parallel on K of
the nproc processors of the parallel architecture machine. The remaining nproc - K
processors are left idle at this stage of the computation. Evidently, this subcase
identifies an instance where the problem to be solved is inherently small relative to
the size of the given parallel architecture machine.

Subcase 2.2. K > nproc. Let N be the positive parameter defined by

N = K / nproc.

For clarity of presentation, we will assume that N is an integer. Otherwise, we let N
be the smallest integer greater than or equal to K / nproc.

Given the positive integer N we partition the blocks Xi and Bi in equation (21)
into 1 -by-)4 block matrices of the form

XA=[Xi, XIA ... A24 (22-a)
and

i =I Bi, B ... S (22-b)

such that the number of columns in each of the leading)4 -1 blocks in both Xi and
Bi is equal to N, and the number of columns in each of the two end blocks is less
than or equal to N. Again, for clarity of presentation we will assume that all blocks in
both Xi and B1 have N columns.

40

The partitioning of Xi and Bi into the block forms given in equation (22)
decomposes the solution of the r triangular systems in equation (21) to the solution
of nproc triangular systems of the form

UBX , i = 1,=..., r;j 1(23)

in which each triangular system comprises s equations and N right-hand sides.
These nproc triangular systems are subsequently solved in parallel on the nproc
processors of the parallel machine. Clearly, all these nproc computations require
the same amount of work since the r lower triangular matrices in equation (23) are
of the same size and each triangular system has the same number of right-hand
sides.

Besides the solution of the nproc triangular systems given in equation (23), we
must also compute the r matrix-matrix multiplies defined by

Yi = xTxI- , i = 1, ..., r , (24)

since the Schur complements Di - XTXi for i = 1,..., r are required for the completion
of the solution process.

In the general case, the blocks X, through Xr have different dimensions, and so
the computation presented in equation (24) does not lead to a proper workload
distribution across the processors. However, if we combine relations (22-a) and
(24) then the problem of computing the products Y1 through Yr is decomposed into
a large numebr of matrix-matrix multiples such that each of these matrix-matrix
multiplies involves the same amount of workload. This way we are able to process
equal amounts of work on different processors of the parallel machine as they
become available.

Since the Schur complement Di - XTXi satisfies the following equality

Di - XTXi = Di - BTaiiBi ,

at the completion of the processing of the workloads defined in equations (23) and
(24) we obtain

Di xTx [B1 i2"1 3TaiB. 1
[Bi-"BIla-1ii B~i T -,iBiDj - ~ B- B~~B:czA1 D-BT~cq'B,1 J

Consequently, we set
Ail = 8i -P,,Ia,' pij,
Bi = B 2-,7P'al"' B1B,

and
D - D-B1Tai1BBi,

41

and repeat the procedure outlined in Case 2 until each of the original diagonal
blocks Aii in the block bordered diagonal matrix PMPT is entirely factored.

In connection to the repeated application of Case 2, we would like to make one
final comment. Since the integer s denotes the size of the pivot block aii in equation
(19), one can compute the upper and lower triangular factors in equation (19) as
soon as the first s columns of the blocks X, through Xr are computed. This way we
are able to bring about more parallel processing in our solution strategy by doing
parts of the computations in equations (19) and (23) in parallel.

14. AN ILLUSTRATION OF ROADMAP IMPLEMENTATION

We will demonstrate the program roadmap reported in Kevorkian (in prepara-
tion-a) using the 21 -by-21 structurally symmetric matric M shown in figure 10. The
"Hx"s denote nonzero entries and the blanks denote zeros. As can be noted, the
sparsity structure of matrix M is quite irregular. This was purposely done to illustrate
generality as well as the classification of cliques presented earlier.

11 1 1 1 1 1 11 122
123456789012345678901

1 x x xx xx
2 x x x
3 x x x x
4 x x x x
5 x x x x x x x x xx
6 xx x xx
7 x x xx xx
8 x x x x x x x x x x
9 x x x x

10 xx xx
11 x xxx x
12 x xx x x
13 x x x x x x x
14 x xx x x xx
15 xx x x
16 x x xx xx
17 xx x xx x xx
18 xx x xx
19 xx x xx
20 xx x x
21 x xxx x

Figure 10. Structurally symmetric matrix M.

Suppose G = (V, E) is the undirected graph of matrix M. The objective of proce-
dure search is to compute in G the set of vertices S. At the completion of search,
each of the five vertices v5, v8, v13, v14, and v17 has separator number equal to 1.
All other vertices in V have separator numbers equal to zero. Thus if we were to
compute S explicitly, then we will obtain the array

42

S = [5, 8, 13, 14, 17].

Since S is not empty, the program roadmap calls procedure dfs. For clarity of
presentation, let us first execute roadmap with the call to procedure cliques (in
classify) excluded. Then at the completion of roadmap we obtain the following
three arrays:

TYPE =[-2,-2, 0,-2, 3],

QUEUE= 1,7, 16,2,3, 4,20,9, 10, 15, 6, 18, 19, 11, 12,21],

and
IQUEUE =[1,4, 5, 11, 14, 17].

Since TYPE is an array of length 5, the subgraph of G induced by the set of ver-
tices V-S has five connected components. These five connected components are
placed on the single array QUEUE one at a time in the order they get computed.
The first five integers on the array IQUEUE are the pointers to the starting vertices
of these five connected components. The first integer 1 on IQUEUE points to the
starting vertex vi of the first connected component computed in dfs, the second
integer 4 on IQUEUE points to the starting vertex v2 of the second connected com-
ponent, up to the fifth integer 14 on IQUEUE, which points to the starting vertex vi I
of the fifth and last connected component computed in dfs. The sixth and last inte-
ger placed on the array IQUEUE is the pointer to the end of the array QUEUE. The
overall relationship between the three single arrays TYPE, QUEUE, and IQUEUE is
summarized in figure 11.

TYPE -2 -2 0 -2 3

QELE 7 16 2 3 4 20 9 10 15 6 18 19 11 12 21______I

IQJUJE 1 4 5 11 14 17

Figure 11. Overall relationship between the arrays TYPE, QUEUE, and IQUEUE.

43

Let G(VM), G(V2) through G(Vs) denote the five connected components placed
on array QUEUE in that order. Then by the configuration in figure 11 we have

V1 = {VI, V7, V16},
V2 ={ v2),

V3 = { v3, v4, v20, v9, vio, v15),
V4 ={v6, v18, v19},

VS = { v11, v12, v21).

These five vertex sets together with the set of vertices S computed in procedure
search provide a vertex partition n1 defined by

1n = (Vl, V2 , V3 , V4, V5 , S).

The star-shaped graph Gn with respect to the vertex partition H is shown in
figure 12.

Figure 12. The graph Gr] with respect to vertex partition n.

To categorize the leaf vertices in the graph Gn, we need to examine the array
TYPE computed in roadmap. Since TYPE [3] = 0, the third connected compo-
nent G(V 3) placed on array QUEUE is not a clique. The other four connected
components placed on array QUEUE are cliques since none of the other four
integers on array TYPE is zero. Among these four cliques, each of the three
cliques G(Vi), G(V2), and G(V4) is semi-interior (type Ci or C2) since TYPE[1 =
TYPE[2] = TYPE[4] = - 2. The other clique, G(V5), placed on array QUEUE is not
semi-interior (type C3 or C4) since TYPE[5] = 3. To verify these findings, con-
sider the graph G of matrix M shown in figure 13. The neigborhoods of the four
vertex sets V1 , V2 , V4 , and V5 are, respectively, NGV1 = {v5, v8 , v17), NGV2 =
Nv13, v17), NGV4= (vs, v14), and NGV5 = Nv8 , v13, v17). As can be seen from the
graph in figure 13, each vertex in the sets VI, V2 , and V4 is adjacent to all ver-
tices in the neighborhoods NGVI, NGV2, and NGV4, respectively, while the ver-
tices v12 and v21 in the set V5 are not adjacent to all vertices in the neighbor-
hood NGV5.

44

Figure 13. The graph G = (V, E) of matrix M.

Also, among the three semi-interior cliques placed on array QUEUE, G(V1), and
G(V4) are interior cliques since the subgraphs induced by the neighborhoods NGV1
and NGV4 are cliques. However, the third semi-interior clique, G(V2), is strictly
semi-interior since the subgraph induced by the neighborhood NGV2 is not a
clique. The categorization of the five connected components of G(V-S) into cliques
and noncliques and the subsequent classification of the clique connected compo-
nents of G(V-S) into semi-interior and nonsemi-interior cliques divides the five leaf
vertices of G• into three disjunct groups as shown in figure 14. Further classifica-
tion of semi-interior cliques into interior and strictly semi-interior cliques will be
covered in Kevorkian (in preparation-a).

semi -inte rio r non semi-interior nonclique
cliques clique component

Figure 14. Grouping of five leaf vertices of GN using the array TYPE.

45

;~ 5, V, 8

To complete our illustration, we apply program roadmap to matrix M, now with
the call to procedure cliques in classify included.

At the first two calls to procedure classify in dfs, roadmap returns to dfs without
calling procedure cliques since both G(VI) and G(V 2) are cliques. However, at the
third call to classify, procedure cliques is invoked since G(V3) is not a clique. This
constitutes the last call to procedure cliques since the remaining two connected
components of G(V-S) are cliques. At the completion of roadmap, the arrays
QUEUE and IQUEUE are as follows:

QUEUE=[1,7, 16, 2, 3, 4, 20, 10, 15, 9, 6, 18, 19, 11, 12, 21],
and

IQUEUE=[1,4,5, -8,-10, 11, 14, 17].

The array TYPE remains unchanged at the completion of this second application of
roadmap.

Since the connected component G(V3) is not a clique, the integer 5 on IQUEUE
(pointer to the starting vertex of G(V3)) is also the pointer to the starting vertex of the
first independent clique computed in connected component G(V3). The negative
integer -8 is the pointer to the starting vertex of the second independent clique
computed in G(V3). The negative integer -10 is the pointer to the starting vertex of
the set of vertices S' defined in relation (9). The overall relationship between the
three arrays TYPE, QUEUE, and IQUEUE is presented in figure 15.

TYPE -2 -2 0 -2 3

CLEUE 1 7 16 2 3 4 20 10 15 9 6 18 19 11 12 21

IQUEUE 1 4 5 -8-10 11 14 17

Figure 15. Arrays TYPE, QUEUE, and IQUEUE at the completion of roadmap.

46

The output of roadmap given in figure 15 provides the information leading to the
final vertex partition n*. By the three pointers 5, -8, and -10 on array IQUEUE, the
application of cliques to connected component G(V3) has produced a vertex parti-
tion W' in G(V3) defined by

n= (Ut, U2 , S'),
where

UI = { v3, v4, v20),

U2 ={v1O,v15),
and

S' = {v9}.

By the conditions imposed in procedure cliques, G(Ut) is a maximal clique in G(V3)
and G(U 2) is a maximal clique in subgraph of G induced by the set of vertices
obtained from V3 by deleting the vertices in U1 and its neighborhood. The vertex
set S' separates G(U 1) and G(U 2) into two independent cliques. Combination of the
vertex partitions n and n' provides another vertex partition n" defined by

n" = (V1 , V2 , U1, U2 , S', V4 , V5 , S).

Consequently, if we let S* be the set of vertices defined by

S*=S U S',

then by Theorem 6 the tuple of seven vertex sets

n* = (Vl, V2, V 4 , V5, U1, U2 , S*)

forms a vertex partition such that the graph Gn* with respect to n* is the star-shaped
graph shown in figure 16.

semi-interior cliques non semi-interior cliques

Figure 16. The graph Gn* with respect to vertex partition n°.

47

By Theorem 6, every connected component of G(V - S*) is a clique and so every
leaf vertex of the graph Gn- corresponds to a clique in G. Also by Theorem 6, every
interior clique in G is a connected component of G(V-S*), which means that every
interior clique in G is represented as a leaf vertex in Grl,. The two interior cliques in
G are G(Vi) and G(V 4), and both cliques are accounted for in the graph Gn*.

We conclude our application of the program roadmap to matrix M with a matrix
interpretation of the graph Grj* in figure 16.

Suppose a is an ordering of the vertex set V obtained by picking vertices from
the first through seventh element of the vertex partition n* in that order. Also, let
P be a permutation matrix such that row i of niatrix PM corresponds to ith element of
the vertex ordering a. Then for the case that the ordering a is given by the 21 -tuple

a = (1,7, 16, 2, 6, 18, 19, 11, 12, 21,3, 4, 20, 10, 15, 9, 5, 8, 13, 14, 17),

the matrix PMPT takes the 7-by-7 block bordered diagonal form shown in figure 17.

1 1 1 1 1 2 2 1 1 1 1 1
1 76268912134005 958347

1 X X X X X X
7 X X X X X X

1 6 X XX X X X
2 X X X
6 X X X X X

18 X X X X X
19 X X X X X
11 X X X X X
12 X XX X X
21 X X X X X

3 X XX X
4 X XX X

20 XXX X
10 XXX X
15 XXX X

9 XXX X
5 X X X X X X X X X X

8 X X X X X X X XX X

13 X X X X X X X
14 X X X X X X X
17 X X XX X XX X

Figure 17. The 7-by-7 block bordered diagonal matrix PMPT.

48

The pivot block A in this block bordered diagonal matrix is a 6-by-6 block diago-
nal matrix in which the ith diagonal block corresponds to the subgraph induced by
the ith element of the vertex partition n*. Therefore, each diagonal block in A is a
full matrix since the subgraphs induced by the leading six elements of the vertex
partition n* are cliques. The general form of the block bordered diagonal matrix in
figure 17 was established in relation (12).

Application of Theorem 5 to the block bordered diagonal matrix PMPT leads
to the following observations. First, by statement (a) we have str(Xi) = str(Bi) and
str(D - X•'Xj) = str(D) for i = 1, 3, since the subgraphs induced by the first and third
elements of the vertex partition n* are interior cliques. Therefore no fill-in will occur
in any part of matrix M if the first and third diagonal blocks of the pivot block A are
factored symbolically. Second, by statement (b) we have str(X2) = str(B2) and
str(D - XT X2) * str(D) since the subgraph induced by the second element of the
vertex partition n* is a strictly semi-interior clique. Thus no fill-in will occur in blocks
X and XT of the block product in (7) if the secon. - ý-onal block of A is factored
symbolically. However, there will occur fill-in in the Schur complement D - XTX in
locations (13, 17) and (17,13) of the original matrix M since the pair (v13, V17) is
not an edge in E and NGV2 = {v13 , v17}. Third, by statements (c) and (d) we have
str(Xi) * str(Bi) for i = 4, 5, 6, since none of the subgraphs induced by the fourth
through sixth elements of the vertex partition n* is a semi-interior clique. With all
these facts combined, the symbolic factorization of the block bordered diagonal
matrix pMpT into the block product form in (7) produces the fill-ins shown in figure
18.

49

.1 11112 211 111
1"76268912134005 958347

X X X X X X

7 X X X X X X

16 X X X X X X

2 X X X

6 XXX X X

18 XXX X X

19 X X X X X

11 X X X X X

12 X XX X X

21 X X X X x
3 XXX X
4 x x X x

20 XXX X 00
10 X XX X

15 XX X x•

9 X XXX 00
5 X X X X X X X X X X

8 X X X X X X X XX X

13 X X@X X 0 X 0 X X@S

14 X x X X C*X 0 0 X CX

17 X XXX X1 X XC X

Figure 18. Block bordered diagonal matrix PMPT with generated fill-in.

Experimental results obtained from the application of program roadmap to a
standard set of test problems including the Harwell-Boeing and a collection of
matrices arising from optimization problems will be reported in Kevorkian (in prepa-
ration-b).

15. CONCLUSIONS

We have presented an efficient linear-time vertex partition algorithm to decom-
pose large sparse symmetric systems of equations into independently solvable
smaller tasks for execution on different processors of a parallel architecture com-
puter. The computationally independent tasks generated by the algorithm include
all full principal submatrices that preserve sparsity in the process of symbolic factor-
ization. This capability forms the most novel part of the presented algorithm.

We have extended the art of constructing block bordered diagonal forms of
large sparse symmetric matrices by developing a method that applies to matrices
with highly irregular sparsity structures and without any reliance on the expertise of
modelers.

A complete implementation of a computer program incorporating the paral-
lelization tool (using the linear algebra package Matlab) is covered in Kevorkian
(1993).

50

16. REFERENCES

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1976. The Design and Analysis of
Computer Algorithms, 3rd printing. Addison-Wesley, Reading, MA.

Anderson, E. et al. 1992. SIAM LAPACK Users' Guide. Philadelphia, PA.

Branin, F. H. 1975. "A Sparse Matrix Modification of Kron's Method of Piecewise
Analysis," Proceedings of the 1975 IEEE Int. Symp. Circuits and Syst., 1975,
pp. 383-386.

Chan, T. F., R. Glowinsky, J. Peraux, and 0. Widlund, eds. 1989. Proc. Second
International Symposium on Domain Decomposition Methods, Jan. 1988, Los
Angeles, CA., Society for Industrial and Applied Mathematics, Philadelphia, PA.

Chua, L. 0., and L. K. Chen. 1976. "Diakoptic and Generalized Hybrid Analysis,"
IEEE Trans. Circuits and Syst., CAS-23, pp. 694-705.

Dirac, G. A. 1961. "On Rigid Circuit Graphs," Abhandlungen aus dem
Mathematischen Seminar der Universitat Hamburg, 25, pp. 70-76.

Duff, I. S., A. M. Erisman, and J. K. Reid. 1986. Direct Methods for Sparse Matrices,
Oxford University Press, London.

George, A., and J. W-H Liu. 1981. Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Inc., Englewood Cliffs.

George, A., and J. W-H Liu. 1989. "The Evolution of the Minimum Degree
Algorithm," SIAM Review, 31, pp. 1-19.

George, A., W. Poole, and R. Voight. 1978. "A Variant of Nested Dissection for Solv-
ing n by n Grid Problems," SIAM J. Numer. Anal., 15, pp. 662-673.

Gill, P. E., W. Murray, D. B. Poncele'on, and M. A. Saunders. 1991. "Solving
Reduced KKT Systems in Barrier Methods for Linear and Quadratic Programming,"
Technical Report SOL 91-7, Systems Optimization Laboratory, Department of
Operations Research, Stanford University, Stanford, CA.

Gill, P. E., W. Murray, D. B. Poncele'on, and M. A. Saunders. 1992.
"Preconditioners for Indefinite Systems Arising in Optimization," SIAM J. Matrix
Anal. Appl., 13, pp. 292-311.

Glowinsky, R., G. H. Golub, G. A, Meurant, and J. Periaux, eds. 1988. Proc. First
International Symposium on Domain Decomposition Methods, Jan. 1987, Pads,
France, Society for Industrial and Applied Mathematics, Philadelphia, PA.

Heath, M. T., E. Ng, and B. W Peyton. 1991. "Parallel Algorithms for Sparse Linear
Systems," SIAM Review, 33, pp. 420-460.

51

Kevorkian, A. K. 1993. (Mar). "Decomposition of Large Sparse Symmetric Systems
for Parallel Computation. Part 2. Parallelization Tool Roadmap," NCCOSC/NRaD
TR1601.

Kevorkian, A. K. (in preparation-a). "Decomposition of Large Sparse Symmetric
Systems for Parallel Computation. Part 3. Recursive Version of Parallelization Tool
Roadmap," NCCOSC/NRaD Technical Report in preparation.

Kevorkian, A. K. (in preparation-b). "Decomposition of Large Sparse Symmetric
Systems for Parallel Computation. Part 4. Experimental Results Using
Parallelization Tool Roadmap," NCCOSC/NRaD Technical Report in preparation.

Kron, G. 1958. Diakoptics, MacDonald, London.

Lekkerkerker, C. G., and J. Ch. Boland. 1962. "Representation of a Finite Graph by
a Set of Intervals on the Real Line," Polska Akademia Nauk Fundamenta
Mathematicae, LI, pp. 45-64.

The MathWorks. 1990. Pro-Matlab User's Guide, South Natick, MA.

Noor, A., H. Kamel, and R. Fulton. 1978. "Substructuring Techniques - Status and
Projections," Computers and Structures, 8, pp. 621-632.

Ogbuobiri, E. C., W. F. Tinney, and J. H. Walker. 1970. "Sparsity-directed
Decomposition for Gaussian Elimination on Matrices," IEEE Trans. on Power
Apparatus and Systems, PAS-80, pp. 141-150.

Parter, S. 1961. "The Use of Linear Graphs in Gauss Elimination." SIAM Review,
3, pp. 119-130.

Rabbat, N., A. Sangiovanni-Vincentelli, and H. Hsieh. 1979. "A Multilevel Newon
Algorithm With Macromodeling and Latency for the Analysis of Large-Scale
Nonlinear Circuits in the Time Domain," IEEE Trans. Circuits and Systems, CAS-
26, pp. 733-741.

Rose, D. J., R. E. Tarjan, and G. S. Lueker. 1976. "Algorithmic Aspects of Vertex
Elimination on Graphs," SIAM J. Comput., 5, pp. 266-283.

Tarjan, R. E. 1972. "Depth-First Search and Linear Graph Algorithms," SIAM J.
Comput., 1, pp. 146-160.

Tarjan, R. E., and M. Yannakakis. 1984. "Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Acyclic Hypergraphs," SIAM J. Comput., 13, pp. 566-579.

52

Yannakakis, M. 1981. "Computing the Minimum Fill-in is NP-Complete," SIAM J.
AIg. Disc. Meth., 2, pp. 77-79.

Zhang, X., R. H. Byrd, and R. B. Schnabel. 1992. "Parallel Methods for Solving
Nonlinear Block Bordered Systems of Equations," SIAM J. Sci. Stat. Comput., 13,
pp. 841-859.

53

REPORT DOCUMENTATION PAGEOMNo07418
Public reporing burden for this collection of Inforniation is estimated to average I hour per resbonse, Including the time for reviewing Instructions. searching existing data sources. gaihering and
malntaJning the data needed, and completing and reviewing the cotlectlion of Information. Send commerts regarding this burden estimate orarny otiefraspect of INs collection of Information. Incklding
suggestlons for reducing this burden. to Washington Headquaters Services. Directorate forinformarion Operations and Reports. 1215Jefferson Davi Highway. Suite 1204. Arlington. VA 222024302Z
and to the Office of Management and Budget. Paperwork Reduction Prob 1'0704-0188). Washingon, 00 20503.

1. AGENCY USE ONLY (Lem Waf 21 REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1993 Final

4. TiTLE AND SUBTITLE 5. FUNDING NUMBERS

DECOMPOSITION OF LARGE SPARSE SYMMETRIC SYSTEMS FOR AN: DN302038
PARALLEL COMPUTATION PE: 0601152N
Part 1: Theoretical Foundations PROJ: ZW62

8. AUTHOR(S)

A. K. Kevorkian

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Command, Control and Ocean Surveillance Center (NCCOSC) REPORT NUMBER

RDT&E Division NRaD TR 1572
San Diego, CA 92152-5001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of the Chief of Naval Research
OCNR-10P
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12L DISTRIBUTION/AVA&AB1LITY STATEMENT 12b. DSrMBLMON CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT W"Mum 200 worst)

Given a sparse symmetric matrix M, we develop a linear-time algorithm to construct in the undirected graph
G = (V, E) of M a vertex partition II "= (V1, V2 , Vr, S *) satisfying the following three properties. First, for any two
distinct elements Vi and VJ of the partition, no vertex in Vj is adjacent to a vertex in Vj. Second, every element Vj
of the partition induces a clique in G. Third, if A is a full principal submatrix of M such that the symbolic factorization of A
does not produce fill-in, then the set of vertices in G corresponding to the rows of A is a subset of an element Vi of the
partition. By the first two properties of the vertex partition 1 *, the solution of a sparse symmetric problem is reduced to the
solution of smaller dense symmetric subproblems. In the case where M is a positive definite matrix, the first property allows
us to factorize r dense symmetric blocks in parallel as well as solve in parallel r triangular systems with multiple right-hand
sides. The third property is a means for computing an ordering that produces acceptably small fill-in.

14. SUBECT TERMS 18NUMEROF PAGES

cliques fill-in parallel computation 63
separators simplicial vertices symbolic factorization 1a PACE CODE

17. SECURITY CLASSFrCATION 8a. SECURITY CLASSIFI.ATION 19. SECURIrY CLASSaI1CATION 2 UNITArlON OF ABSTRAPT
OF REPORT OF ThIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS EEPORT

NSN 784001-2804M00 A . bm M F"

UNCLASSUME
21& NAME OF RESPONSIBLE INDMIDUAL 21 b TAEEPH'4E (O- 21c, OFFICE SYMBOL

A. K Kevorkian (619) 553-2058 Code 7304

UNCLASSED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 013 P. M. Reeves (1)
Code 014 K. J. Campbell (1)
Code 0141 A. Gordon (1)
Code 02902 J. M. Baird (1)
Code 0292 G. C. Pennoyer (1)
Code 402 R. A. Wasilausky (1)
Code 421 D. L. Conwell (1)
Code 423 J. P. Schill (1)
Code 542 F. P. Snyder (1)
Code 5701 L. A. Parnell (1)
Code 70 R. E. Shutters (1)
Code 702 D. A. Hanna (1)
Code 73 J. A. Roese (1)
Code 7304 A. K. Kevorkian (100)
Code 731 W. G. Thomson (1)
Code 7601 K. N. Bromley (1)
Code 78 R. H. Hearn (1)
Code 782 R. Dukelow (1)
Code 804 J. W. Rockway (1)
Code 943 M. R. Blackburn (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and Development
Information Center (NARDIC)

Washington, DC 20360-5000

GIDEP Operations Center
Corona, CA 91718-8000

NCCOSC Division Detachment
Warminster, PA 18974-5000

Office of Naval Research
Arlington, VA 22217-5000

Defense Advanced Research Projects Agency
Arlington, VA 22203-1714 (2)

